Chapter 3 A Primer in Regression Techniques

All models are wrong, but some are useful – Box

3.1 Introduction

This chapter will provide all the foundations we need for the coming chapters. It is not intended as a general and all-exhaustive introduction to regression techniques, but rather the minimum requirement moving forwards. We will also hone our data processing and plotting skills.

3.2 Prerequisites

library(mefa4)                # data manipulation
library(mgcv)                 # GAMs
library(pscl)                 # zero-inflated models
library(lme4)                 # GLMMs
library(MASS)                 # Negative Binomial GLM
library(partykit)             # regression trees
library(intrval)              # interval magic
library(opticut)              # optimal partitioning
library(visreg)               # regression visualization
library(ResourceSelection)    # marginal effects
library(MuMIn)                # multi-model inference
source("functions.R")         # some useful stuff
load("_data/josm/josm.rda") # JOSM data

Let’s pick a species, Ovenbird (OVEN), that is quite common and abundant in the data set. We put together a little data set to work with:

spp <- "OVEN"

ytot <- Xtab(~ SiteID + SpeciesID, josm$counts[josm$counts$DetectType1 != "V",])
ytot <- ytot[,colSums(ytot > 0) > 0]
x <- data.frame(
  josm$surveys, 
  y=as.numeric(ytot[rownames(josm$surveys), spp]))
x$FOR <- x$Decid + x$Conif+ x$ConifWet # forest
x$AHF <- x$Agr + x$UrbInd + x$Roads # 'alienating' human footprint
x$WET <- x$OpenWet + x$ConifWet + x$Water # wet + water
cn <- c("Open", "Water", "Agr", "UrbInd", "SoftLin", "Roads", "Decid", 
  "OpenWet", "Conif", "ConifWet")
x$HAB <- droplevels(find_max(x[,cn])$index) # drop empty levels
x$DEC <- ifelse(x$HAB == "Decid", 1, 0)

table(x$y)
## 
##    0    1    2    3    4    5    6 
## 2493  883  656  363  132   29   13

3.3 Poisson null model

The null model states that the expected values of the count at all locations are identical: \(E[Y_i]=\lambda\) (\(i=1,...,n\)), where \(Y_i\) is a random variable that follows a Poisson distribution with mean \(\lambda\): \((Y_i \mid \lambda) \sim Poisson(\lambda)\). The observation (\(y_i\)) is a realization of the random variables \(Y\) at site \(i\), these observations are independent and identically distributed (i.i.d.), and we have \(n\) observations in total.

Saying the the distribution is Poisson is an assumption in itself. For example we assume that the variance equals the mean (\(V(\mu)=\mu\)).

mP0 <- glm(y ~ 1, data=x, family=poisson)
mean(x$y)
## [1] 0.8831
mean(fitted(mP0))
## [1] 0.8831
exp(coef(mP0))
## (Intercept) 
##      0.8831
summary(mP0)
## 
## Call:
## glm(formula = y ~ 1, family = poisson, data = x)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
##  -1.33   -1.33   -1.33    1.02    3.57  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -0.1243     0.0157   -7.89  2.9e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 7424.8  on 4568  degrees of freedom
## Residual deviance: 7424.8  on 4568  degrees of freedom
## AIC: 12573
## 
## Number of Fisher Scoring iterations: 6

The family=poisson specification implicitly assumes that we use a logarithmic link functions, that is to say that \(log(\lambda) = \beta_0\), or equivalently: \(\lambda = e^{\beta_0}\). The mean of the observations equal the mean of the fitted values, as expected.

The logarithmic function is called the link function, its inverse, the exponential function is called the inverse link function. The model family has these convenently stored for us:

mP0$family
## 
## Family: poisson 
## Link function: log
mP0$family$linkfun
## function (mu) 
## log(mu)
## <environment: namespace:stats>
mP0$family$linkinv
## function (eta) 
## pmax(exp(eta), .Machine$double.eps)
## <environment: namespace:stats>

3.4 Exploring covariates

Now, in the absence of info about species biology, we are looking at a blank page. How should we proceed? What kind of covariate (linear predictor) should we use? We can do a quick and dirty exploration to see what are the likely candidates. We use a regression tree (ctree refers to conditional trees). It is a nonparametric method based on binary recursive partitioning in a conditional inference framework. This means that binary splits are made along the predictor variables, and the explanatory power of the split is assessed based on how it maximized difference between the splits and minimized the difference inside the splits. It is called conditional, because every new split is conditional on the previous splits (difference can be measured in many different ways, think e.g. sum of squares). The stopping rule in this implementation is based on permutation tests (see ?ctree or details and references).

mCT <- ctree(y ~ Open + Water + Agr + UrbInd + SoftLin + Roads + 
  Decid + OpenWet + Conif + ConifWet, data=x)
plot(mCT)

The model can be seen as a piecewise constant regression, where each bucket (defined by the splits along the tree) yields a constant predictions based on the mean of the observations in the bucket. Any new data classified into the same bucket will get the same value. There is no notion of uncertainty (confidence or prediction intervals) in this nonparameric model.

But we see something very useful: the proportion of deciduous forest in the landscape seems to be vary influential for Ovenbird abundance.

3.5 Single covariate

With this new found knowledge, let’s fit a parametric (Poisson) linear model using Decid as a predictor:

mP1 <- glm(y ~ Decid, data=x, family=poisson)
mean(x$y)
## [1] 0.8831
mean(fitted(mP0))
## [1] 0.8831
coef(mP1)
## (Intercept)       Decid 
##      -1.164       2.134

Same as before, the mean of the observations equal the mean of the fitted values. But instead of only the intercapt, now we have 2 coefficients estimated. Our linear predictor thus looks like: \(log(\lambda_i) = \beta_0 + \beta_1 x_{1i}\). This means that expected abundance is \(e^{\beta_0}\) where Decid=0, \(e^{\beta_0}e^{\beta_1}\) where Decid=1, and \(e^{\beta_0+\beta_1 x_{1}}\) in between.

The relationship can be visualized by plotting the fitted values against the predictor, or using the coefficients to make predictions using our formula:

dec <- seq(0, 1, 0.01)
lam <- exp(coef(mP1)[1] + coef(mP1)[2] * dec)
plot(fitted(mP1) ~ Decid, x, pch=19, col="grey")
lines(lam ~ dec, col=2)
rug(x$Decid)

The model summary tells us that resudials are not quite right (we would expect 0 median and symmertic tails), in line with residual deviance being much higher than residual degrees of freedom (these should be close if the Poisson assumption holds). But, the Decid effect is significant (meaning that the effect size is large compared to the standard error):

summary(mP1)
## 
## Call:
## glm(formula = y ~ Decid, family = poisson, data = x)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -2.291  -0.977  -0.790   0.469   4.197  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -1.1643     0.0352   -33.1   <2e-16 ***
## Decid         2.1338     0.0537    39.7   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 7424.8  on 4568  degrees of freedom
## Residual deviance: 5736.9  on 4567  degrees of freedom
## AIC: 10887
## 
## Number of Fisher Scoring iterations: 6

We can compare this model to the null (constant, intercept-only) model:

AIC(mP0, mP1)
BIC(mP0, mP1)
model.sel(mP0, mP1)
## Model selection table 
##     (Intrc) Decid df logLik  AICc delta weight
## mP1 -1.1640 2.134  2  -5442 10887     0      1
## mP0 -0.1243        1  -6285 12573  1686      0
## Models ranked by AICc(x)
R2dev(mP0, mP1)
##          R2   R2adj Deviance    Dev0    DevR     df0     dfR p_value    
## mP0    0.00    0.00     0.00 7424.78 7424.78 4568.00 4568.00  <2e-16 ***
## mP1    0.23    0.23  1687.87 7424.78 5736.91 4568.00 4567.00  <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

AIC uses the negative log likelihood and the number of parameters as penalty. Smaller value indicate a model that is closer to the (unknowable) true model (caveat: this statement is true only asymptotically, i.e. it holds for very large sample sizes). For small samples, we of ten use BIC (more penalty for complex models when sample size is small), or AICc (as in MuMIn::model.sel).

The other little table returned by R2dev shows deviance based (quasi) \(R^2\) and adjusted \(R^2\) for some GLM classes, just for the sake of completeness. The Chi-squared based test indicates good fit when the \(p\)-value is high (probability of being distributed according the Poisson).

None of these two models is a particularly good fit in terms of the parametric distribution. This, however does not mean these models are not useful for making inferential statements about ovenbirds. How useful these statements are, that is another question. Let’s dive into cinfidence and prediction intervals a bit.

B <- 2000
alpha <- 0.05

xnew <- data.frame(Decid=seq(0, 1, 0.01))
CI0 <- predict_sim(mP0, xnew, interval="confidence", level=1-alpha, B=B)
PI0 <- predict_sim(mP0, xnew, interval="prediction", level=1-alpha, B=B)
CI1 <- predict_sim(mP1, xnew, interval="confidence", level=1-alpha, B=B)
PI1 <- predict_sim(mP1, xnew, interval="prediction", level=1-alpha, B=B)

## nominal coverage is 95%
sum(x$y %[]% predict_sim(mP0, interval="prediction", level=1-alpha, B=B)[,c("lwr", "upr")]) / nrow(x)
## [1] 0.9619
sum(x$y %[]% predict_sim(mP1, interval="prediction", level=1-alpha, B=B)[,c("lwr", "upr")]) / nrow(x)
## [1] 0.9711

A model is said to have good coverage when the prediction intervals encompass the right amount of the observations. When the nominal level is 95% (\(100 \times (1-\alpha)\), where \(\alpha\) is Type I. error rate), we expect 95% of the observations fall within the 95% prediction interval. The prediction interval includes the uncertainty around the coefficients (confidence intervals, uncertainty in \(\hat{\lambda}\)) and the stochasticity coming from the Poisson distribution (\(Y_i \sim Poisson(\hat{\lambda})\)).

The code above calculate the confidence and prediction intervals for the two models. We also compared the prediction intervals and the nomial levels, and those were quite close (ours being a bit more conservative), hinting that maybe the Poisson distributional assumption is not very bad after all, but we’ll come back to this later.

Let’s see our confidence and prediction intervals for the two models:

yj <- jitter(x$y, 0.5)

plot(yj ~ Decid, x, xlab="Decid", ylab="E[Y]",
  ylim=c(0, max(PI1$upr)+1), pch=19, col="#bbbbbb33", main="P0")

polygon(c(xnew$Decid, rev(xnew$Decid)),
  c(PI0$lwr, rev(PI0$upr)), border=NA, col="#0000ff44")
polygon(c(xnew$Decid, rev(xnew$Decid)),
  c(CI0$lwr, rev(CI0$upr)), border=NA, col="#0000ff44")
lines(CI0$fit ~ xnew$Decid, lty=1, col=4)

polygon(c(xnew$Decid, rev(xnew$Decid)),
  c(PI1$lwr, rev(PI1$upr)), border=NA, col="#ff000044")
polygon(c(xnew$Decid, rev(xnew$Decid)),
  c(CI1$lwr, rev(CI1$upr)), border=NA, col="#ff000044")
lines(CI1$fit ~ xnew$Decid, lty=1, col=2)

legend("topleft", bty="n", fill=c("#0000ff44", "#ff000044"), lty=1, col=c(4,2),
  border=NA, c("Null", "Decid"))

Exercise

What can we conclude from this plot?

Coverage is comparable, so what is the difference then?

Which model should I use for prediction and why? (Hint: look at the non overlapping regions.)

3.6 Additive model

Generalized additive models (GAMs) are semiparametric, meaning that parametric assumptions apply, but responses are modelled more flexibly.

mGAM <- mgcv::gam(y ~ s(Decid), x, family=poisson)
summary(mGAM)
## 
## Family: poisson 
## Link function: log 
## 
## Formula:
## y ~ s(Decid)
## 
## Parametric coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -0.5606     0.0283   -19.8   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Approximate significance of smooth terms:
##           edf Ref.df Chi.sq p-value    
## s(Decid) 8.56   8.94   1193  <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## R-sq.(adj) =  0.239   Deviance explained =   29%
## UBRE = 0.15808  Scale est. = 1         n = 4569
plot(mGAM)

fitCT <- predict(mCT, x[order(x$Decid),])
fitGAM <- predict(mGAM, xnew, type="response")

plot(yj ~ Decid, x, xlab="Decid", ylab="E[Y]",
  ylim=c(0, max(PI1$upr)+1), pch=19, col="#bbbbbb33", main="P0")
lines(CI0$fit ~ xnew$Decid, lty=1, col=1)
lines(CI1$fit ~ xnew$Decid, lty=1, col=2)
lines(fitCT ~ x$Decid[order(x$Decid)], lty=1, col=3)
lines(fitGAM ~ xnew$Decid, lty=1, col=4)
legend("topleft", bty="n", lty=1, col=1:4,
  legend=c("Null", "Decid", "ctree", "GAM"))

Exercise

Play with GAM and other variables to understand response curves:

plot(mgcv::gam(y ~ s(<variable_name>), data=x, family=poisson))

3.7 Nonlinear terms

We can use polynomial terms to approximate the GAM fit:

mP12 <- glm(y ~ Decid + I(Decid^2), data=x, family=poisson)
mP13 <- glm(y ~ Decid + I(Decid^2) + I(Decid^3), data=x, family=poisson)
mP14 <- glm(y ~ Decid + I(Decid^2) + I(Decid^3) + I(Decid^4), data=x, family=poisson)
model.sel(mP1, mP12, mP13, mP14, mGAM)
## Model selection table 
##        (Int)    Dcd  Dcd^2  Dcd^3  Dcd^4 s(Dcd) class df logLik  AICc
## mGAM -0.5606                                  +   gam  9  -5209 10438
## mP14 -2.6640 16.640 -38.60 41.470 -16.31          glm  5  -5215 10441
## mP13 -2.3910 11.400 -16.31  8.066                 glm  4  -5226 10461
## mP12 -1.9240  6.259  -3.97                        glm  3  -5269 10544
## mP1  -1.1640  2.134                               glm  2  -5442 10887
##       delta weight
## mGAM   0.00   0.84
## mP14   3.31   0.16
## mP13  23.42   0.00
## mP12 106.04   0.00
## mP1  449.60   0.00
## Models ranked by AICc(x)

Not a surprise that the most complex model won. GAM was more complex than that.

pr <- cbind(
  predict(mP1, xnew, type="response"),
  predict(mP12, xnew, type="response"),
  predict(mP13, xnew, type="response"),
  predict(mP14, xnew, type="response"),
  fitGAM)
matplot(xnew$Decid, pr, lty=1, type="l",
  xlab="Decid", ylab="E[Y]")
legend("topleft", lty=1, col=1:5, bty="n",
  legend=c("Linear", "Quadratic", "Cubic", "Quartic", "GAM"))

Let’s see how these affect our prediction intervals:

CI12 <- predict_sim(mP12, xnew, interval="confidence", level=1-alpha, B=B)
PI12 <- predict_sim(mP12, xnew, interval="prediction", level=1-alpha, B=B)
CI13 <- predict_sim(mP13, xnew, interval="confidence", level=1-alpha, B=B)
PI13 <- predict_sim(mP13, xnew, interval="prediction", level=1-alpha, B=B)
CI14 <- predict_sim(mP14, xnew, interval="confidence", level=1-alpha, B=B)
PI14 <- predict_sim(mP14, xnew, interval="prediction", level=1-alpha, B=B)

op <- par(mfrow=c(2,2))
plot(yj ~ Decid, x, xlab="Decid", ylab="E[Y]",
  ylim=c(0, max(PI1$upr)+1), pch=19, col="#bbbbbb33", main="Linear")
polygon(c(xnew$Decid, rev(xnew$Decid)),
  c(PI1$lwr, rev(PI1$upr)), border=NA, col="#0000ff44")
polygon(c(xnew$Decid, rev(xnew$Decid)),
  c(CI1$lwr, rev(CI1$upr)), border=NA, col="#0000ff88")
lines(CI1$fit ~ xnew$Decid, lty=1, col=4)
lines(fitGAM ~ xnew$Decid, lty=2, col=1)

plot(yj ~ Decid, x, xlab="Decid", ylab="E[Y]",
  ylim=c(0, max(PI1$upr)+1), pch=19, col="#bbbbbb33", main="Quadratic")
polygon(c(xnew$Decid, rev(xnew$Decid)),
  c(PI12$lwr, rev(PI12$upr)), border=NA, col="#0000ff44")
polygon(c(xnew$Decid, rev(xnew$Decid)),
  c(CI12$lwr, rev(CI12$upr)), border=NA, col="#0000ff88")
lines(CI12$fit ~ xnew$Decid, lty=1, col=4)
lines(fitGAM ~ xnew$Decid, lty=2, col=1)

plot(yj ~ Decid, x, xlab="Decid", ylab="E[Y]",
  ylim=c(0, max(PI1$upr)+1), pch=19, col="#bbbbbb33", main="P0")
polygon(c(xnew$Decid, rev(xnew$Decid)),
  c(PI13$lwr, rev(PI13$upr)), border=NA, col="#0000ff44")
polygon(c(xnew$Decid, rev(xnew$Decid)),
  c(CI13$lwr, rev(CI13$upr)), border=NA, col="#0000ff88")
lines(CI13$fit ~ xnew$Decid, lty=1, col=4)
lines(fitGAM ~ xnew$Decid, lty=2, col=1)

plot(yj ~ Decid, x, xlab="Decid", ylab="E[Y]",
  ylim=c(0, max(PI1$upr)+1), pch=19, col="#bbbbbb33", main="P0")
polygon(c(xnew$Decid, rev(xnew$Decid)),
  c(PI14$lwr, rev(PI14$upr)), border=NA, col="#0000ff44")
polygon(c(xnew$Decid, rev(xnew$Decid)),
  c(CI14$lwr, rev(CI14$upr)), border=NA, col="#0000ff88")
lines(CI14$fit ~ xnew$Decid, lty=1, col=4)
lines(fitGAM ~ xnew$Decid, lty=2, col=1)

par(op)

3.8 Categorical variables

Categorical variables are expanded into a model matrix before estimation. The model matrix usually contains indicator variables for each level (value 1 when factor value equals a particular label, 0 otherwise) except for the reference category (check relevel if you want to change the reference category).

The estimate for the reference category comes from the intercept, the rest of the estimates are relative to the reference category. In the log-linear model example this means a ratio.

head(model.matrix(~DEC, x))
##         (Intercept) DEC
## CL10102           1   1
## CL10106           1   0
## CL10108           1   0
## CL10109           1   1
## CL10111           1   1
## CL10112           1   1
mP2 <- glm(y ~ DEC, data=x, family=poisson)
summary(mP2)
## 
## Call:
## glm(formula = y ~ DEC, family = poisson, data = x)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.691  -0.921  -0.921   0.449   4.543  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -0.8577     0.0308   -27.8   <2e-16 ***
## DEC           1.2156     0.0358    33.9   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 7424.8  on 4568  degrees of freedom
## Residual deviance: 6095.5  on 4567  degrees of freedom
## AIC: 11246
## 
## Number of Fisher Scoring iterations: 6
coef(mP2)
## (Intercept)         DEC 
##     -0.8577      1.2156

The estimate for a non-deciduous landscape is \(e^{\beta_0}\), and it is \(e^{\beta_0}e^{\beta_1}\) for deciduous landscapes. Of course such binary classification at the landscape (1 km\(^2\)) level doesn’t really makes sense for various reasons:

boxplot(Decid ~ DEC, x)

model.sel(mP1, mP2)
## Model selection table 
##     (Intrc) Decid   DEC df logLik  AICc delta weight
## mP1 -1.1640 2.134        2  -5442 10887   0.0      1
## mP2 -0.8577       1.216  2  -5621 11246 358.6      0
## Models ranked by AICc(x)
R2dev(mP1, mP2)
##          R2   R2adj Deviance    Dev0    DevR     df0     dfR p_value    
## mP1    0.23    0.23  1687.87 7424.78 5736.91 4568.00 4567.00  <2e-16 ***
## mP2    0.18    0.18  1329.23 7424.78 6095.55 4568.00 4567.00  <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Having estimates for each land cover type improves the model, but the model using continuous variable is still better

mP3 <- glm(y ~ HAB, data=x, family=poisson)
summary(mP3)
## 
## Call:
## glm(formula = y ~ HAB, family = poisson, data = x)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.691  -0.873  -0.817   0.449   4.832  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   -1.386      0.577   -2.40   0.0163 * 
## HABWater       1.030      0.690    1.49   0.1357   
## HABAgr         0.693      0.913    0.76   0.4477   
## HABUrbInd      0.134      0.764    0.17   0.8612   
## HABRoads     -10.916    201.285   -0.05   0.9567   
## HABDecid       1.744      0.578    3.02   0.0025 **
## HABOpenWet     0.422      0.591    0.71   0.4755   
## HABConif       0.913      0.579    1.58   0.1150   
## HABConifWet    0.288      0.579    0.50   0.6185   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 7424.8  on 4568  degrees of freedom
## Residual deviance: 5997.2  on 4560  degrees of freedom
## AIC: 11161
## 
## Number of Fisher Scoring iterations: 10
model.sel(mP1, mP2, mP3)
## Model selection table 
##     (Intrc) Decid   DEC HAB df logLik  AICc delta weight
## mP1 -1.1640 2.134            2  -5442 10887   0.0      1
## mP3 -1.3860               +  9  -5572 11162 274.4      0
## mP2 -0.8577       1.216      2  -5621 11246 358.6      0
## Models ranked by AICc(x)
R2dev(mP1, mP2, mP3)
##          R2   R2adj Deviance    Dev0    DevR     df0     dfR p_value    
## mP1    0.23    0.23  1687.87 7424.78 5736.91 4568.00 4567.00  <2e-16 ***
## mP2    0.18    0.18  1329.23 7424.78 6095.55 4568.00 4567.00  <2e-16 ***
## mP3    0.19    0.19  1427.55 7424.78 5997.23 4568.00 4560.00  <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The prediction in this case would look like: \(log(\lambda_i)=\beta_0 + \sum_{j=1}^{k-1} \beta_j x_{ji}\), where we have \(k\) factor levels (and \(k-1\) indicator variables besides the intercept).

Here is a general way of calculating fitted values or making predictions based on the design matrix (X) and the coefficients (b) (column ordering in X must match the elements in b) given a parametric log-linear model object and data frame df:

b <- coef(object)
X <- model.matrix(formula(object), df)
exp(X %*% b)

3.9 Multiple main effects

We can keep adding variables to the model in a forwards-selection fashion. add1 adds variables one at a time, selecting from the scope defined by the formula:

scope <- as.formula(paste("~ FOR + WET + AHF +",paste(cn, collapse="+")))
tmp <- add1(mP1, scope)
tmp$AIC_drop <- tmp$AIC-tmp$AIC[1] # current model
tmp[order(tmp$AIC),]
## Single term additions
## 
## Model:
## y ~ Decid
##          Df Deviance   AIC AIC_drop
## ConifWet  1     5638 10791    -96.5
## Conif     1     5685 10838    -49.4
## WET       1     5687 10839    -48.1
## Water     1     5721 10873    -13.7
## FOR       1     5724 10876    -11.0
## OpenWet   1     5728 10880     -6.9
## Open      1     5730 10882     -4.7
## Roads     1     5733 10885     -1.9
## AHF       1     5734 10886     -0.7
## <none>          5737 10887      0.0
## Agr       1     5736 10888      1.2
## UrbInd    1     5736 10889      1.5
## SoftLin   1     5737 10889      1.6

It looks like ConifWet is the best covariate to add next because it leads to the biggest drop in AIC, and both effects are significant.

mP4 <- glm(y ~ Decid + ConifWet, data=x, family=poisson)
summary(mP4)
## 
## Call:
## glm(formula = y ~ Decid + ConifWet, family = poisson, data = x)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -2.237  -0.996  -0.679   0.447   4.439  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -0.7014     0.0556  -12.61   <2e-16 ***
## Decid         1.6224     0.0719   22.57   <2e-16 ***
## ConifWet     -0.9785     0.0993   -9.86   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 7424.8  on 4568  degrees of freedom
## Residual deviance: 5638.4  on 4566  degrees of freedom
## AIC: 10791
## 
## Number of Fisher Scoring iterations: 6

drop1 is the function opposite of add1, it assesses which term should be dropped from a more saturated model:

formula_all <- y ~ Open + Agr + UrbInd + SoftLin + Roads + 
  Decid + OpenWet + Conif + ConifWet + 
  OvernightRain + TSSR + DAY + Longitude + Latitude

tmp <- drop1(glm(formula_all, data=x, family=poisson))
tmp$AIC_drop <- tmp$AIC-tmp$AIC[1] # current model
tmp[order(tmp$AIC),]
## Single term deletions
## 
## Model:
## y ~ Open + Agr + UrbInd + SoftLin + Roads + Decid + OpenWet + 
##     Conif + ConifWet + OvernightRain + TSSR + DAY + Longitude + 
##     Latitude
##               Df Deviance   AIC AIC_drop
## OvernightRain  1     5500 10674     -2.0
## Roads          1     5500 10674     -1.9
## SoftLin        1     5500 10675     -1.6
## Agr            1     5501 10675     -1.4
## <none>               5500 10676      0.0
## Decid          1     5505 10679      3.0
## OpenWet        1     5505 10679      3.1
## Conif          1     5508 10682      6.0
## UrbInd         1     5511 10685      8.7
## Longitude      1     5519 10693     16.5
## TSSR           1     5524 10698     21.8
## ConifWet       1     5528 10703     26.4
## DAY            1     5529 10703     26.7
## Open           1     5531 10705     28.7
## Latitude       1     5580 10754     78.2

The step function can be used to automatically select the best model based on adding/dropping terms:

mPstep <- step(glm(formula_all, data=x, family=poisson), 
  trace=0) # use trace=1 to see all the steps
summary(mPstep)
## 
## Call:
## glm(formula = y ~ Open + UrbInd + Decid + OpenWet + Conif + ConifWet + 
##     TSSR + DAY + Longitude + Latitude, family = poisson, data = x)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -2.763  -0.986  -0.674   0.451   4.624  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -5.88293    1.30223   -4.52  6.3e-06 ***
## Open        -3.47428    0.65867   -5.27  1.3e-07 ***
## UrbInd      -1.66883    0.54216   -3.08  0.00208 ** 
## Decid        0.83372    0.25957    3.21  0.00132 ** 
## OpenWet     -0.74076    0.30238   -2.45  0.01430 *  
## Conif       -0.88558    0.26566   -3.33  0.00086 ***
## ConifWet    -1.89423    0.27170   -6.97  3.1e-12 ***
## TSSR        -1.23416    0.24984   -4.94  7.8e-07 ***
## DAY         -2.87970    0.52686   -5.47  4.6e-08 ***
## Longitude    0.03831    0.00877    4.37  1.2e-05 ***
## Latitude     0.20930    0.02309    9.06  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 7424.8  on 4568  degrees of freedom
## Residual deviance: 5501.1  on 4558  degrees of freedom
## AIC: 10669
## 
## Number of Fisher Scoring iterations: 6

3.10 Interaction

When we consider interactions between two variables (say \(x_1\) and \(x_2\)), we really referring to adding another variable to the model matrix that is a product of the two variables (\(x_{12}=x_1 x_2\)):

head(model.matrix(~x1 * x2, data.frame(x1=1:4, x2=10:7)))
##   (Intercept) x1 x2 x1:x2
## 1           1  1 10    10
## 2           1  2  9    18
## 3           1  3  8    24
## 4           1  4  7    28

Let’s consider interaction between our two predictors from before:

mP5 <- glm(y ~ Decid * ConifWet, data=x, family=poisson)
summary(mP5)
## 
## Call:
## glm(formula = y ~ Decid * ConifWet, family = poisson, data = x)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -2.081  -1.022  -0.484   0.374   4.321  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -0.5604     0.0566    -9.9   <2e-16 ***
## Decid            1.2125     0.0782    15.5   <2e-16 ***
## ConifWet        -2.3124     0.1490   -15.5   <2e-16 ***
## Decid:ConifWet   5.3461     0.3566    15.0   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 7424.8  on 4568  degrees of freedom
## Residual deviance: 5395.2  on 4565  degrees of freedom
## AIC: 10549
## 
## Number of Fisher Scoring iterations: 6
model.sel(mP0, mP1, mP4, mP5)
## Model selection table 
##       (Int)   Dcd     CnW CnW:Dcd df logLik  AICc  delta weight
## mP5 -0.5604 1.213 -2.3120   5.346  4  -5271 10549    0.0      1
## mP4 -0.7014 1.622 -0.9785          3  -5392 10791  241.2      0
## mP1 -1.1640 2.134                  2  -5442 10887  337.7      0
## mP0 -0.1243                        1  -6285 12573 2023.6      0
## Models ranked by AICc(x)

The model with the interaction is best supported, but how do we make sense of this relationship? We can’t easily visualize it in a single plot. We can either

  1. fix all variables (at their mean/meadian) and see how the response is changing along a single variable: this is called a conditional effect (conditional on fixing other variables), this is what visreg::visreg does;
  2. or plot the fitted values against the predictor variables, this is called a marginal effects, and this is what ResourceSelection::mep does.
visreg(mP5, scale="response", xvar="ConifWet", by="Decid")

mep(mP5)

Let’s use GAM to fit a bivariate spline:

mGAM2 <- mgcv::gam(y ~ s(Decid, ConifWet), data=x, family=poisson)
plot(mGAM2, scheme=2, rug=FALSE)

Final battle of Poisson models:

model.sel(mP0, mP1, mP12, mP13, mP14, mP2, mP3, mP4, mP5, mGAM, mGAM2)
## Model selection table 
##         (Int)    Dcd  Dcd^2  Dcd^3  Dcd^4   DEC HAB     CnW CnW:Dcd s(Dcd)
## mGAM2 -0.6251                                                             
## mGAM  -0.5606                                                            +
## mP14  -2.6640 16.640 -38.60 41.470 -16.31                                 
## mP13  -2.3910 11.400 -16.31  8.066                                        
## mP12  -1.9240  6.259  -3.97                                               
## mP5   -0.5604  1.213                                -2.3120   5.346       
## mP4   -0.7014  1.622                                -0.9785               
## mP1   -1.1640  2.134                                                      
## mP3   -1.3860                                     +                       
## mP2   -0.8577                             1.216                           
## mP0   -0.1243                                                             
##       s(Dcd,CnW) class df logLik  AICc   delta weight
## mGAM2          +   gam 27  -5160 10376    0.00      1
## mGAM               gam  9  -5209 10438   61.11      0
## mP14               glm  5  -5215 10441   64.42      0
## mP13               glm  4  -5226 10461   84.53      0
## mP12               glm  3  -5269 10544  167.14      0
## mP5                glm  4  -5271 10549  172.99      0
## mP4                glm  3  -5392 10791  414.18      0
## mP1                glm  2  -5442 10887  510.71      0
## mP3                glm  9  -5572 11162  785.06      0
## mP2                glm  2  -5621 11246  869.35      0
## mP0                glm  1  -6285 12573 2196.58      0
## Models ranked by AICc(x)
R2dev(mP0, mP1, mP12, mP13, mP14, mP2, mP3, mP4, mP5, mGAM, mGAM2)
##            R2   R2adj Deviance    Dev0    DevR     df0     dfR p_value    
## mP0      0.00    0.00     0.00 7424.78 7424.78 4568.00 4568.00 < 2e-16 ***
## mP1      0.23    0.23  1687.87 7424.78 5736.91 4568.00 4567.00 < 2e-16 ***
## mP12     0.27    0.27  2033.44 7424.78 5391.34 4568.00 4566.00 < 2e-16 ***
## mP13     0.29    0.28  2118.06 7424.78 5306.72 4568.00 4565.00 7.6e-14 ***
## mP14     0.29    0.29  2140.17 7424.78 5284.61 4568.00 4564.00 3.4e-13 ***
## mP2      0.18    0.18  1329.23 7424.78 6095.55 4568.00 4567.00 < 2e-16 ***
## mP3      0.19    0.19  1427.55 7424.78 5997.23 4568.00 4560.00 < 2e-16 ***
## mP4      0.24    0.24  1786.40 7424.78 5638.38 4568.00 4566.00 < 2e-16 ***
## mP5      0.27    0.27  2029.60 7424.78 5395.18 4568.00 4565.00 < 2e-16 ***
## mGAM     0.29    0.29  2152.63 7424.78 5272.15 4568.00 4559.00 5.5e-13 ***
## mGAM2    0.30    0.30  2250.35 7424.78 5174.43 4568.00 4539.00 8.4e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Of course, the most complex model wins but the Chi-square test is still significant (indicating lack of fit). Let’s try different error distribution.

3.11 Different error distributions

We will use the 2-variable model with interaction:

mP <- glm(y ~ Decid * ConifWet, data=x, family=poisson)

Let us try the Negative Binomial distribution first. This distribution is related to Binomial experiments (number of trials required to get a fixed number of successes given a binomial probability). It can also be derived as a mixture of Poisson and Gamma distributions (see Wikipedia), which is a kind of hierarchical model. In this case, the Gamma distribution acts as an i.i.d. random effect for the intercept: \(Y_i\sim Poisson(\lambda_i)\), \(\lambda_i \sim Gamma(e^{\beta_0+\beta_1 x_{1i}}, \gamma)\), where \(\gamma\) is the Gamma variance.

The Negative Binomial variance (using the parametrization common in R functions) is a function of the mean and the scale: \(V(\mu) = \mu + \mu^2/\theta\).

mNB <- glm.nb(y ~ Decid * ConifWet, data=x)
summary(mNB)
## 
## Call:
## glm.nb(formula = y ~ Decid * ConifWet, data = x, init.theta = 3.5900635, 
##     link = log)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.860  -0.985  -0.451   0.317   3.803  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -0.5905     0.0630   -9.38   <2e-16 ***
## Decid            1.2459     0.0892   13.97   <2e-16 ***
## ConifWet        -2.3545     0.1605  -14.67   <2e-16 ***
## Decid:ConifWet   5.6945     0.4009   14.20   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(3.59) family taken to be 1)
## 
##     Null deviance: 6089.3  on 4568  degrees of freedom
## Residual deviance: 4387.7  on 4565  degrees of freedom
## AIC: 10440
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  3.590 
##           Std. Err.:  0.425 
## 
##  2 x log-likelihood:  -10430.448

Next, we look at zero-inflated models. In this case, the mixture distribution is a Bernoulli distribution and a count distribution (Poisson or Negative Binomial, for example). The 0’s can come from both the zero and the count distributions, whereas the >0 values can only come from the count distribution: \(A_i \sim Bernoulli(\varphi)\), \(Y_i \sim Poisson(A_i \lambda_i)\).

The zero part of the zero-inflated models are often parametrized as probability of zero (\(1-\varphi\)), as in the pscl::zeroinfl function:

## Zero-inflated Poisson
mZIP <- zeroinfl(y ~ Decid * ConifWet | 1, x, dist="poisson")
summary(mZIP)
## 
## Call:
## zeroinfl(formula = y ~ Decid * ConifWet | 1, data = x, dist = "poisson")
## 
## Pearson residuals:
##    Min     1Q Median     3Q    Max 
## -1.218 -0.700 -0.339  0.378  8.951 
## 
## Count model coefficients (poisson with log link):
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -0.3241     0.0651   -4.98  6.5e-07 ***
## Decid            1.0700     0.0860   12.44  < 2e-16 ***
## ConifWet        -2.4407     0.1564  -15.60  < 2e-16 ***
## Decid:ConifWet   5.9373     0.3840   15.46  < 2e-16 ***
## 
## Zero-inflation model coefficients (binomial with logit link):
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   -1.613      0.103   -15.6   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Number of iterations in BFGS optimization: 12 
## Log-likelihood: -5.21e+03 on 5 Df
## Zero-inflated Negative Binomial
mZINB <- zeroinfl(y ~ Decid * ConifWet | 1, x, dist="negbin")
summary(mZINB)
## 
## Call:
## zeroinfl(formula = y ~ Decid * ConifWet | 1, data = x, dist = "negbin")
## 
## Pearson residuals:
##    Min     1Q Median     3Q    Max 
## -1.190 -0.689 -0.338  0.361  8.956 
## 
## Count model coefficients (negbin with log link):
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -0.3873     0.0732   -5.29  1.2e-07 ***
## Decid            1.1195     0.0911   12.29  < 2e-16 ***
## ConifWet        -2.4230     0.1589  -15.25  < 2e-16 ***
## Decid:ConifWet   5.9227     0.3963   14.94  < 2e-16 ***
## Log(theta)       2.6504     0.5305    5.00  5.9e-07 ***
## 
## Zero-inflation model coefficients (binomial with logit link):
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   -1.861      0.193   -9.64   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Theta = 14.159 
## Number of iterations in BFGS optimization: 22 
## Log-likelihood: -5.2e+03 on 6 Df

Now we compare the four different parametric models:

AIC(mP, mNB, mZIP, mZINB)

Our best model is the Zero-inflated Negative Binomial. The probability of observing a zero as part of the zero distribution is back transformed from the zero coefficient using the inverse logit function:

unname(plogis(coef(mZINB, "zero"))) # P of 0
## [1] 0.1346

Now we use the scale parameter to visualize the variance functions for the Negative Binomial models (the 1:1 line is the Poisson model):

mNB$theta
## [1] 3.59
mZINB$theta
## [1] 14.16
mu <- seq(0, 5, 0.01)
plot(mu, mu + mu^2/mNB$theta, type="l", col=2,
  ylab=expression(V(mu)), xlab=expression(mu))
lines(mu, mu + mu^2/mZINB$theta, type="l", col=4)
abline(0,1, lty=2)
legend("topleft", bty="n", lty=1, col=c(2,4),
  legend=paste(c("NB", "ZINB"), round(c(mNB$theta, mZINB$theta), 2)))

Exercise

How can we interpret these different kinds of overdispersion (zero-inflation and higher than Poisson variance)?

What are some of the biological mechanisms that can contribute to the overdispersion?

It is also common practice to consider generalized linear mixed models (GLMMs) for count data. These mixed models are usually considered as Poisson-Lognormal mixtures. The simplest, so called i.i.d., case is similar to the Negative Binomial, but instead of Gamma, we have Lognormal distribution: \(Y_i\sim Poisson(\lambda_i)\), \(log(\lambda_i) = \beta_0+\beta_1 x_{1i}+\epsilon_i\), \(\epsilon_i \sim Normal(0, \sigma^2)\), where \(\sigma^2\) is the Lognormal variance on the log scale.

We can use the lme4::glmer function: use SiteID as random effect (we have exactly \(n\) random effects).

mPLN1 <- glmer(y ~ Decid * ConifWet + (1 | SiteID), data=x, family=poisson)
summary(mPLN1)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: y ~ Decid * ConifWet + (1 | SiteID)
##    Data: x
## 
##      AIC      BIC   logLik deviance df.resid 
##    10423    10455    -5206    10413     4564 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -1.150 -0.629 -0.288  0.418  5.469 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  SiteID (Intercept) 0.294    0.542   
## Number of obs: 4569, groups:  SiteID, 4569
## 
## Fixed effects:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -0.7518     0.0675   -11.1   <2e-16 ***
## Decid            1.2847     0.0920    14.0   <2e-16 ***
## ConifWet        -2.3380     0.1625   -14.4   <2e-16 ***
## Decid:ConifWet   5.6326     0.4118    13.7   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Decid  ConfWt
## Decid       -0.895              
## ConifWet    -0.622  0.644       
## Decid:CnfWt  0.176 -0.379 -0.700

Note

The number of unknowns we have to somehow estimate is now more than the number of observations we have. How is that possible?

Alternatively, we can use SurveyArea as a grouping variable. We have now \(m < n\) random effects, and survey areas can be seen as larger landscapes within which the sites are clustered: \(Y_ij\sim Poisson(\lambda_ij)\), \(log(\lambda_ij) = \beta_0+\beta_1 x_{1ij}+\epsilon_i\), \(\epsilon_i \sim Normal(0, \sigma^2)\). The index \(i\) (\(i=1,...,m\)) defines the cluster (survey area), the \(j\) (\(j=1,...,n_i\)) defines the sites within survey area \(i\) (\(n = \sum_{i=1}^m n_i\)).

mPLN2 <- glmer(y ~ Decid * ConifWet + (1 | SurveyArea), data=x, family=poisson)
summary(mPLN2)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: y ~ Decid * ConifWet + (1 | SurveyArea)
##    Data: x
## 
##      AIC      BIC   logLik deviance df.resid 
##    10021    10053    -5006    10011     4564 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -1.739 -0.643 -0.320  0.355  6.535 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  SurveyArea (Intercept) 0.295    0.543   
## Number of obs: 4569, groups:  SurveyArea, 271
## 
## Fixed effects:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -0.7459     0.0783   -9.53   <2e-16 ***
## Decid            1.1967     0.0984   12.16   <2e-16 ***
## ConifWet        -2.3213     0.1686  -13.77   <2e-16 ***
## Decid:ConifWet   5.5346     0.3977   13.92   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Decid  ConfWt
## Decid       -0.808              
## ConifWet    -0.610  0.628       
## Decid:CnfWt  0.162 -0.325 -0.670

In the battle of distributions (keeping the linear predictor part the same) the clustered GLMM was best supported:

tmp <- AIC(mP, mNB, mZIP, mZINB, mPLN1, mPLN2)
tmp$delta_AIC <- tmp$AIC - min(tmp$AIC)
tmp[order(tmp$AIC),]

Exercise

What are some of the biological mechanisms that can lead to the clustered GLMM bi be the best model?

3.12 Count duration effects

Let’s change gears a bit now, and steer closer to the main focus of this book. We want to account for methodological differences among samples. One aspect of mathodologies involve variation in total counting duration. We’ll now inspect what that does to our observations.

First, we create a list of matrices where counts are tabulated by surveys and time intervals for each species:

ydur <- Xtab(~ SiteID + Dur + SpeciesID , 
  josm$counts[josm$counts$DetectType1 != "V",])

We use the same species (spp) as before and create a data frame indluring the cumulative counts during 3, 5, and 10 minutes:

y <- as.matrix(ydur[[spp]])
head(y)
##         0-3min 3-5min 5-10min
## CL10102      3      0       0
## CL10106      0      0       0
## CL10108      0      0       0
## CL10109      2      0       1
## CL10111      2      0       0
## CL10112      2      0       0
colMeans(y) # mean count of new individuals
##  0-3min  3-5min 5-10min 
## 0.67367 0.09346 0.11600
cumsum(colMeans(y)) # cumulative counts
##  0-3min  3-5min 5-10min 
##  0.6737  0.7671  0.8831
x <- data.frame(
  josm$surveys, 
  y3=y[,"0-3min"],
  y5=y[,"0-3min"]+y[,"3-5min"],
  y10=rowSums(y))

table(x$y3)
## 
##    0    1    2    3    4    5    6 
## 2768  922  576  226   61   14    2
table(x$y5)
## 
##    0    1    2    3    4    5    6 
## 2643  894  632  285   87   24    4
table(x$y10)
## 
##    0    1    2    3    4    5    6 
## 2493  883  656  363  132   29   13

If we fit single-predictor GLMs to these 3 responses, we get different fitted values, consistent with our mean counts:

m3 <- glm(y3 ~ Decid, data=x, family=poisson)
m5 <- glm(y5 ~ Decid, data=x, family=poisson)
m10 <- glm(y10 ~ Decid, data=x, family=poisson)
mean(fitted(m3))
## [1] 0.6737
mean(fitted(m5))
## [1] 0.7671
mean(fitted(m10))
## [1] 0.8831

Using the multiple time interval data, we can pretend that we have a mix of methodologies with respect to count duration:

set.seed(1)
x$meth <- as.factor(sample(c("A", "B", "C"), nrow(x), replace=TRUE))
x$y <- x$y3
x$y[x$meth == "B"] <- x$y5[x$meth == "B"]
x$y[x$meth == "C"] <- x$y10[x$meth == "C"]
boxplot(y ~ meth, x)
sb <- sum_by(x$y, x$meth)
points(1:3, sb[,1]/sb[,2], col=2, type="b", pch=4)

We can estimate the effect of the methodology:

mm <- glm(y ~ meth - 1, data=x, family=poisson)
summary(mm)
## 
## Call:
## glm(formula = y ~ meth - 1, family = poisson, data = x)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.309  -1.263  -1.162   0.369   3.616  
## 
## Coefficients:
##       Estimate Std. Error z value Pr(>|z|)    
## methA  -0.3929     0.0309  -12.70  < 2e-16 ***
## methB  -0.2255     0.0289   -7.79  6.6e-15 ***
## methC  -0.1550     0.0277   -5.60  2.1e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 7225.2  on 4569  degrees of freedom
## Residual deviance: 6941.8  on 4566  degrees of freedom
## AIC: 11657
## 
## Number of Fisher Scoring iterations: 6
exp(coef(mm))
##  methA  methB  methC 
## 0.6751 0.7981 0.8564

Or the effect of the continuous predictor and the method (discrete):

mm <- glm(y ~ Decid + meth, data=x, family=poisson)
summary(mm)
## 
## Call:
## glm(formula = y ~ Decid + meth, family = poisson, data = x)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -2.278  -0.939  -0.736   0.457   4.201  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -1.4416     0.0457  -31.56  < 2e-16 ***
## Decid         2.1490     0.0574   37.43  < 2e-16 ***
## methB         0.1347     0.0424    3.18   0.0015 ** 
## methC         0.2705     0.0415    6.51  7.3e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 6976.3  on 4568  degrees of freedom
## Residual deviance: 5442.7  on 4565  degrees of freedom
## AIC: 10159
## 
## Number of Fisher Scoring iterations: 6
boxplot(fitted(mm) ~ meth, x)

exp(coef(mm))
## (Intercept)       Decid       methB       methC 
##      0.2365      8.5766      1.1442      1.3106

The fixed effects adjusts the means well:

cumsum(colMeans(y))
##  0-3min  3-5min 5-10min 
##  0.6737  0.7671  0.8831
mean(y[,1]) * c(1, exp(coef(mm))[3:4])
##         methB  methC 
## 0.6737 0.7708 0.8829

But it is all relative, depends on reference methodology/protocol. The problem is, we can’t easily extrapolate to a methodology with count duration of 12 minutes, or interpolate to a mathodology with count duration of 2 or 8 minutes. We need somehow to express time expediture in minutes to make that work. Let’s try something else:

x$tmax <- c(3, 5, 10)[as.integer(x$meth)]
mm <- glm(y ~ Decid + I(log(tmax)), data=x, family=poisson)
summary(mm)
## 
## Call:
## glm(formula = y ~ Decid + I(log(tmax)), family = poisson, data = x)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -2.284  -0.939  -0.731   0.453   4.195  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   -1.6777     0.0702  -23.91  < 2e-16 ***
## Decid          2.1504     0.0574   37.48  < 2e-16 ***
## I(log(tmax))   0.2218     0.0340    6.53  6.7e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 6976.3  on 4568  degrees of freedom
## Residual deviance: 5443.0  on 4566  degrees of freedom
## AIC: 10158
## 
## Number of Fisher Scoring iterations: 6
tmax <- seq(0, 20, 0.01)
plot(tmax, exp(log(tmax) * coef(mm)[3]), type="l",
  ylab="Method effect", col=2)

Now we are getting somewhere. But still, this function keep increasing monotonically.

Exercise

What kind of function would we need and why?

What is the underlying biological mechanism?

3.13 Count radius effects

Before solving the count duration issue, let us look at the effect of survey area. We get a similar count breakdown, but now by distance band:

ydis <- Xtab(~ SiteID + Dis + SpeciesID , 
  josm$counts[josm$counts$DetectType1 != "V",])

y <- as.matrix(ydis[[spp]])
head(y)
##         0-50m 50-100m 100+m
## CL10102     1       2     0
## CL10106     0       0     0
## CL10108     0       0     0
## CL10109     1       2     0
## CL10111     1       0     1
## CL10112     0       2     0
colMeans(y) # mean count of new individuals
##   0-50m 50-100m   100+m 
## 0.29241 0.49223 0.09849
cumsum(colMeans(y)) # cumulative counts
##   0-50m 50-100m   100+m 
##  0.2924  0.7846  0.8831
x <- data.frame(
  josm$surveys, 
  y50=y[,"0-50m"],
  y100=y[,"0-50m"]+y[,"50-100m"])

table(x$y50)
## 
##    0    1    2    3    4    5 
## 3521  792  228   25    2    1
table(x$y100)
## 
##    0    1    2    3    4    5    6 
## 2654  833  647  316   92   20    7

We don’t consider the unlimited distance case, because the survey area there is unknown (although we will ultimately address this problem mater). We compare the counts within the 0-50 and 0-100 m circles:

m50 <- glm(y50 ~ Decid, data=x, family=poisson)
m100 <- glm(y100 ~ Decid, data=x, family=poisson)
mean(fitted(m50))
## [1] 0.2924
mean(fitted(m100))
## [1] 0.7846
coef(m50)
## (Intercept)       Decid 
##      -2.265       2.126
coef(m100)
## (Intercept)       Decid 
##      -1.327       2.209

3.14 Offsets

Offsets are constant terms in the linear predictor, e.g. \(log(\lambda_i) = \beta_0 + \beta_1 x_{1i} + o_i\), where \(o_i\) is an offset. In the survey area case, an offset might be the log of area surveyed. The logic for this is based on point processes: intensity is a linear function of area under a homogeneous Poisson point process. So we can assume that \(o_i = log(A_i)\), where \(A\) stands for area.

Let’s see if using area as offset makes our models comparable:

m50 <- glm(y50 ~ Decid, data=x, family=poisson, 
  offset=rep(log(0.5^2*pi), nrow(x)))
m100 <- glm(y100 ~ Decid, data=x, family=poisson,
  offset=rep(log(1^2*pi), nrow(x)))
coef(m50)
## (Intercept)       Decid 
##      -2.024       2.126
coef(m100)
## (Intercept)       Decid 
##      -2.471       2.209
mean(exp(model.matrix(m50) %*% coef(m50)))
## [1] 0.3723
mean(exp(model.matrix(m100) %*% coef(m100)))
## [1] 0.2498

These coefficients and mean predictions are much closer to each other, but something else is going on.

Exercise

Can you guess why we cannot make abundances comparable using log area as as offset?

We pretend again, that survey area varies in our data set:

set.seed(1)
x$meth <- as.factor(sample(c("A", "B"), nrow(x), replace=TRUE))
x$y <- x$y50
x$y[x$meth == "B"] <- x$y100[x$meth == "B"]
boxplot(y ~ meth, x)

Methodology effect:

mm <- glm(y ~ meth - 1, data=x, family=poisson)
summary(mm)
## 
## Call:
## glm(formula = y ~ meth - 1, family = poisson, data = x)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.256  -1.256  -0.775   0.228   3.731  
## 
## Coefficients:
##       Estimate Std. Error z value Pr(>|z|)    
## methA  -1.2040     0.0375  -32.10   <2e-16 ***
## methB  -0.2370     0.0240   -9.87   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 7299.4  on 4569  degrees of freedom
## Residual deviance: 5587.9  on 4567  degrees of freedom
## AIC: 9066
## 
## Number of Fisher Scoring iterations: 6
exp(coef(mm))
## methA methB 
## 0.300 0.789

Predictor and method effects:

mm <- glm(y ~ Decid + meth, data=x, family=poisson)
summary(mm)
## 
## Call:
## glm(formula = y ~ Decid + meth, family = poisson, data = x)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -2.185  -0.847  -0.584   0.274   4.347  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -2.2719     0.0554   -41.0   <2e-16 ***
## Decid         2.1706     0.0690    31.4   <2e-16 ***
## methB         0.9804     0.0445    22.0   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 6110.2  on 4568  degrees of freedom
## Residual deviance: 4531.0  on 4566  degrees of freedom
## AIC: 8011
## 
## Number of Fisher Scoring iterations: 6
boxplot(fitted(mm) ~ meth, x)

exp(coef(mm))
## (Intercept)       Decid       methB 
##      0.1031      8.7632      2.6654
cumsum(colMeans(y))[1:2]
##   0-50m 50-100m 
##  0.2924  0.7846
mean(y[,1]) * c(1, exp(coef(mm))[3])
##         methB 
## 0.2924 0.7794

Use log area as continuous predictor: we would expect a close to 1:1 relationship on the abundance scale.

x$logA <- log(ifelse(x$meth == "A", 0.5, 1)^2*pi)
mm <- glm(y ~ Decid + logA, data=x, family=poisson)
summary(mm)
## 
## Call:
## glm(formula = y ~ Decid + logA, family = poisson, data = x)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -2.185  -0.847  -0.584   0.274   4.347  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -2.1011     0.0513   -40.9   <2e-16 ***
## Decid         2.1706     0.0690    31.4   <2e-16 ***
## logA          0.7072     0.0321    22.0   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 6110.2  on 4568  degrees of freedom
## Residual deviance: 4531.0  on 4566  degrees of freedom
## AIC: 8011
## 
## Number of Fisher Scoring iterations: 6
A <- seq(0, 2, 0.01) # in ha
plot(A, exp(log(A) * coef(mm)[3]), type="l",
  ylab="Method effect", col=2)
abline(0, 1, lty=2)

The offset forces the relationship to be 1:1 (it is like fixing the logA coefficient to be 1):

mm <- glm(y ~ Decid, data=x, family=poisson, offset=x$logA)
summary(mm)
## 
## Call:
## glm(formula = y ~ Decid, family = poisson, data = x, offset = x$logA)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -2.302  -0.836  -0.512   0.260   4.219  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -2.3374     0.0453   -51.6   <2e-16 ***
## Decid         2.1758     0.0690    31.5   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 5671.1  on 4568  degrees of freedom
## Residual deviance: 4609.2  on 4567  degrees of freedom
## AIC: 8087
## 
## Number of Fisher Scoring iterations: 6
boxplot(fitted(mm) ~ meth, x)

cumsum(colMeans(y))[1:2]
##   0-50m 50-100m 
##  0.2924  0.7846
c(0.5, 1)^2*pi * mean(exp(model.matrix(mm) %*% coef(mm))) # /ha
## [1] 0.2200 0.8798

Exercise

Why did we get a logA coefficient that was less than 1 when theoretically we should have gotten 1?

Predictions using offsets in glm can be tricky. The safest way is to use the matrix product (exp(model.matrix(mm) %*% coef(mm) + <offset>)). We can often omit the offset, e.g. in the log area case we can express the prediction per unit area. If the unit is 1 ha, as in our case, log(1)=0, which means the mean abundance per unit area can be calculated by omitting the offsets all together.