March 08, 2018 Code R intrval shiny slider

The **intrval** R package is lightweight (~11K), standalone (apart from importing from **graphics**, has exactly 0 non-**base** dependency), and it has a very narrow scope: it implements relational operators for intervals — very well aligned with the *tiny manifesto*. In this post we will explore the use of the package in two **shiny** apps with sliders.

The first example uses a regular slider that returns a single value. To make that an interval, we will use standard deviation (SD, *sigma*) in a quality control chart (QCC). The code is based on the `pistonrings`

data set from the **qcc** package. The Shewhart chart sets 3 *sigma* limit to indicate state of control. The slider is used to adjusts the *sigma* limit and the GIF below plays is as an animation.

```
library(shiny)
library(intrval)
library(qcc)
data(pistonrings)
mu <- mean(pistonrings$diameter[pistonrings$trial])
SD <- sd(pistonrings$diameter[pistonrings$trial])
x <- pistonrings$diameter[!pistonrings$trial]
## UI function
ui <- fluidPage(
plotOutput("plot"),
sliderInput("x", "x SD:",
min=0, max=5, value=0, step=0.1,
animate=animationOptions(100)
)
)
# Server logic
server <- function(input, output) {
output$plot <- renderPlot({
Main <- paste("Shewhart quality control chart",
"diameter of piston rings", sprintf("+/- %.1f SD", input$x),
sep="\n")
iv <- mu + input$x * c(-SD, SD)
plot(x, pch = 19, col = x %)(% iv +1, type = "b",
ylim = mu + 5 * c(-SD, SD), main = Main)
abline(h = mu)
abline(h = iv, lty = 2)
})
}
## Run shiny app
if (interactive()) shinyApp(ui, server)
```

The second example uses range slider returning two values, which is our interval. To spice things up a bit, we combine intervals on two axes to color some random points. The next range slider defines a distance interval and colors the random points inside the ring.

```
library(shiny)
library(intrval)
set.seed(1)
n <- 10^4
x <- round(runif(n, -2, 2), 2)
y <- round(runif(n, -2, 2), 2)
d <- round(sqrt(x^2 + y^2), 2)
## UI function
ui <- fluidPage(
titlePanel("intrval example with shiny"),
sidebarLayout(
sidebarPanel(
sliderInput("bb_x", "x value:",
min=min(x), max=max(x), value=range(x),
step=round(diff(range(x))/20, 1), animate=TRUE
),
sliderInput("bb_y", "y value:",
min = min(y), max = max(y), value = range(y),
step=round(diff(range(y))/20, 1), animate=TRUE
),
sliderInput("bb_d", "radial distance:",
min = 0, max = max(d), value = c(0, max(d)/2),
step=round(max(d)/20, 1), animate=TRUE
)
),
mainPanel(
plotOutput("plot")
)
)
)
# Server logic
server <- function(input, output) {
output$plot <- renderPlot({
iv1 <- x %[]% input$bb_x & y %[]% input$bb_y
iv2 <- x %[]% input$bb_y & y %[]% input$bb_x
iv3 <- d %()% input$bb_d
op <- par(mfrow=c(1,2))
plot(x, y, pch = 19, cex = 0.25, col = iv1 + iv2 + 3,
main = "Intersecting bounding boxes")
plot(x, y, pch = 19, cex = 0.25, col = iv3 + 1,
main = "Deck the halls:\ndistance range from center")
par(op)
})
}
## Run shiny app
if (interactive()) shinyApp(ui, server)
```

If you think there are other use cases for **intrval** in **shiny** applications, let me know in the comments section!

In a paper recently published in the Condor, titled *Evaluating time-removal models for estimating availability of boreal birds during point-count surveys: sample size requirements and model complexity*, we assessed different ways of controlling for point-count duration in bird counts using data from the Boreal Avian Modelling Project. As the title indicates, the paper describes a cost-benefit analysis to make recommendations about when to use different types of the removal model. The paper is open access, so feel free to read the whole paper here).

- Fitting removal models with the detect R package
- Phylogeny and species traits predict bird detectability
- PVA: Publication Viability Analysis, round 3
- The progress bar just got a lot cheaper
- What is new in the intrval R package?

ABMI (6) ARU (1) C (1) CRAN (1) Hungary (2) JOSM (2) PVA (2) PVAClone (1) QPAD (2) R (20) R packages (1) bioacoustics (1) biodiversity (1) birds (2) course (2) data (1) data cloning (4) dclone (3) dependencies (1) detect (3) detectability (2) footprint (3) forecasting (1) functions (3) intrval (4) lhreg (1) mefa4 (1) monitoring (2) pbapply (5) phylogeny (1) plyr (1) poster (2) processing time (2) progress bar (4) publications (2) report (1) sector effects (1) shiny (1) single visit (1) site (1) slider (1) slides (2) special (3) species (1) trend (1) tutorials (2) video (4)