tolerance.Rd
Species tolerances and sample heterogeneities.
tolerance(x, ...) # S3 method for cca tolerance(x, choices = 1:2, which = c("species","sites"), scaling = "species", useN2 = TRUE, hill = FALSE, ...)
x | object of class |
---|---|
choices | numeric; which ordination axes to compute tolerances and heterogeneities for. Defaults to axes 1 and 2. |
which | character; one of |
scaling | character or numeric; the ordination scaling to
use. See |
hill | logical; if |
useN2 | logical; should the bias in the tolerances / heterogeneities be reduced via scaling by Hill's N2? |
... | arguments passed to other methods. |
Function to compute species tolerances and site heterogeneity measures from unimodal ordinations (CCA & CA). Implements Eq 6.47 and 6.48 from the Canoco 4.5 Reference Manual (pages 178--179).
Matrix of tolerances/heterogeneities with some additional
attributes: which
, scaling
, and N2
, the latter of
which will be NA
if useN2 = FALSE
.
data(dune) data(dune.env) mod <- cca(dune ~ ., data = dune.env) ## defaults to species tolerances tolerance(mod)#> #> Species Tolerance #> #> Scaling: 2 #> #> CCA1 CCA2 #> Achimill 0.32968099 0.9241988 #> Agrostol 0.93670069 0.9238455 #> Airaprae 1.04694096 0.5889849 #> Alopgeni 0.72227472 0.3760138 #> Anthodor 1.00596787 0.8338212 #> Bellpere 0.32891011 0.9962790 #> Bromhord 0.27740999 0.6236199 #> Chenalbu 0.00000000 0.0000000 #> Cirsarve 0.00000000 0.0000000 #> Comapalu 0.47185632 0.8029414 #> Eleopalu 0.50344134 0.9384960 #> Elymrepe 0.35119963 0.5642491 #> Empenigr 0.00000000 0.0000000 #> Hyporadi 1.05840696 0.7523003 #> Juncarti 0.78397702 1.0686743 #> Juncbufo 0.69275956 0.6180830 #> Lolipere 0.51006235 0.8278177 #> Planlanc 0.36040676 0.6962294 #> Poaprat 0.58184277 0.9547104 #> Poatriv 0.78695928 0.7433503 #> Ranuflam 0.56576326 1.1725628 #> Rumeacet 0.58715663 0.8751491 #> Sagiproc 0.70922180 1.1153129 #> Salirepe 0.98530179 0.1077917 #> Scorautu 1.04355761 1.0724439 #> Trifprat 0.03045846 0.3651949 #> Trifrepe 1.21543364 0.9115613 #> Vicilath 0.24853962 0.6194084 #> Bracruta 1.03787313 1.0958331 #> Callcusp 0.57882025 1.0418623 #>## sample heterogeneities for CCA axes 1:6 tolerance(mod, which = "sites", choices = 1:6)#> #> Sample Heterogeneity #> #> Scaling: 2 #> #> CCA1 CCA2 CCA3 CCA4 CCA5 CCA6 #> 1 0.2350112 0.8611530 1.7964571 0.4445499 2.4235732 0.5496289 #> 2 0.7100754 0.4136311 0.8151643 0.6311751 1.0467901 0.2514646 #> 3 0.5076492 0.7279717 0.8306874 0.5590739 0.3904998 0.9162012 #> 4 0.5955037 0.6901907 0.7931255 0.4873638 0.3966068 0.8700581 #> 5 0.6001048 0.5614830 1.1481560 0.3569604 0.4423909 1.9420043 #> 6 0.7272637 0.6867342 1.6068628 0.7778498 0.9187843 0.4938865 #> 7 0.6478967 0.4993262 0.7207318 0.3817131 0.4130713 0.7228173 #> 8 0.8563491 0.5498552 0.4217718 0.3370226 0.3013276 0.9535190 #> 9 0.5599722 0.7399384 0.4170304 1.0535541 1.4612437 0.7626183 #> 10 0.5210280 0.5806978 0.5856634 0.4174860 1.8559344 0.8890262 #> 11 0.4489323 0.6016877 0.3317371 1.8780211 1.2965939 2.1953737 #> 12 0.4948094 1.1084494 0.5226746 1.5064446 0.5703077 1.1561020 #> 13 0.6998985 0.8859365 0.4215474 0.8582272 0.5673698 0.5186678 #> 14 1.5925779 0.6747926 0.8927360 1.6798300 0.3480218 0.1575892 #> 15 1.0107648 0.5294221 1.0975629 1.7632888 0.2240900 0.3727240 #> 16 0.8031479 0.6058313 0.4871527 0.4227451 0.5341256 0.6990815 #> 17 0.5936276 1.5142792 0.5137979 1.0224938 1.7931775 0.6261853 #> 18 0.5689409 1.4067575 0.6398557 0.4983399 0.4364791 0.6590394 #> 19 1.1330387 0.9816332 1.1242398 0.7238920 0.5577662 0.7036044 #> 20 0.6737757 1.4458326 1.4380928 1.0959027 0.4142423 0.5332460 #>