Total Moose Workflow
total.Rd
`switch_response` switches between total Moose vs. cows only. This sets the column name for total Moose estimation. `mc_update_total` Updates/prepares the Moose data set for downstream analyses (i.e. calculates some derived variables, sets a surveyed/unsurveyed indicator, and optionally takes a subset). `mc_fit_total` fit total Moose abundance models. `mc_models_total` prints out estimates from the models.
Usage
switch_response(type = "total")
mc_update_total(x, srv = NULL, ss = NULL)
mc_fit_total(
x,
vars = NULL,
zi_vars = NULL,
dist = "ZINB",
weighted = FALSE,
robust = FALSE,
intercept = c("both", "count", "zero", "none"),
xv = FALSE,
...
)
mc_models_total(ml, x, coefs = TRUE)
mc_predict_total(model_id, ml, x, do_boot = TRUE, do_avg = FALSE)
mc_get_pred(PI, ss = NULL)
pred_density_moose_PI(PI)
mc_plot_residuals(model_id, ml, x)
mc_plot_predpi(PI)
mc_plot_pidistr(PI, id = NULL, plot = TRUE, breaks = "Sturges")
mc_plot_predfit(i, PI, ss = NULL, interactive = FALSE)
Arguments
- type
The type of the response, can be `"total"` or `"cows"` for `switch_response`.
- x
A data frame with Moose data, or a data frame from `mc_update_total()`.
- srv
Logical vector, rows of `x` that are surveyed, falls back to global options when `NULL`.
- ss
Logical vector to subset `x`, default is to take no subset.
- vars
column names of `x` to be used as predictors for the count model.
- zi_vars
optional, column names of `x` to be used as predictors for the zero model.
- dist
Count distribution (`P`, `NB`, `ZIP`, `ZINB`).
- weighted
Logical, to use weighting to moderate influential observations.
- robust
Logical, use robust regression approach.
- intercept
Which intercepts to keep. Dropped intercepts lead to regression through the origin (at the linear predictor scale).
- xv
Logical, should leave-one-out error be calculated.
- ...
Other arguments passed to `zeroinfl2()`.
- ml
Named list of models.
- coefs
logical, return coefficient table too.
- model_id
model ID or model IDs (can be multiple from `names(ml)`).
- do_boot
Logical, to do bootstrap or not.
- do_avg
Logical, to do model averaging or not.
- PI
PI object returned by `mc_predict_total()`
- id
Cell ID.
- plot
Logical, to plot or just give summary.
- breaks
Breaks argument passed to `graphics::hist()`.
- i
Column (variable) name or index.
- interactive
Logical, draw interactive plot.
Examples
mc_options(B=10)
x <- read.csv(
system.file("extdata/MayoMMU_QuerriedData.csv",
package="moosecounter"))
#switch_response("cows") # for cows only
switch_response("total")
x <- mc_update_total(x)
mc_plot_univariate("Subalp_Shrub_250buf", x, "ZINB")
vars <- c("ELC_Subalpine", "Fire1982_2012", "Fire8212_DEM815",
"NALC_Needle", "NALC_Shrub", "Subalp_Shrub_250buf",
"ELCSub_Fire8212DEM815", "SubShrub250_Fire8212DEM815")
mc_plot_multivariate(vars, x)
ML <- list()
ML[["Model 0"]] <- mc_fit_total(x, dist="ZINB")
ML[["Model 1"]] <- mc_fit_total(x, vars[1:2], dist="ZINB")
ML[["Model 2"]] <- mc_fit_total(x, vars[2:3], dist="ZIP")
ML[["Model 3"]] <- mc_fit_total(x, vars[3:4], dist="ZINB")
mc_models_total(ML, x)
mc_plot_residuals("Model 3", ML, x)
PI <- mc_predict_total(
model_id=c("Model 1", "Model 3"),
ml=ML,
x=x,
do_boot=TRUE, do_avg=TRUE)
mc_get_pred(PI)
pred_density_moose_PI(PI)
mc_plot_predpi(PI)
mc_plot_pidistr(PI)
mc_plot_pidistr(PI, id=2)