Exploration
explore.Rd
Functions to explore relationships between total Moose or composition as response vs. environmental predictor variables.
Usage
mc_plot_univariate(
i,
x,
dist = "ZINB",
base = TRUE,
type = c("density", "map", "fit"),
interactive = FALSE
)
mc_plot_multivariate(vars, x, alpha = NULL)
mc_plot_comp(i, x)
Arguments
- i
Column name from `x` to be used as a predictor.
- x
Data frame with Moose data.
- dist
Count distribution (`P`, `NB`, `ZIP`, or `ZINB`).
- base
Logical, draw base graphics or ggplot2.
- type
Character, type of plot to be drawn (`"density"`, `"map"`, `"fit"`). Base plot can draw all 3, ggplot2 can only draw one at a time.
- interactive
Logical, draw interactive plot (not available for base plots).
- vars
A vector of column names from `x` to be used as a predictor.
- alpha
Alpha level defining `mincriterion = 1 - alpha` for `partykit::ctree()`.
Details
`mc_plot_univariate` implements visual univariate (single predictor) exploration for the total Moose count models.
`mc_plot_multivariate` implements visual multivariate (multiple predictors) exploration based on regression trees (recursive partitioning in a conditional inference framework) for total Moose counts.
`mc_plot_comp` implements visual univariate (single predictor) exploration for the multinomial composition models.
Examples
## Prepare Moose data from Mayo
x <- read.csv(
system.file("extdata/MayoMMU_QuerriedData.csv",
package="moosecounter"))
switch_response("total")
x <- mc_update_total(x)
## Univariate exploration for total Moose
mc_plot_univariate("Subalp_Shrub_250buf", x, "ZINB")
## Multivariate exploration for total Moose
vars <- c("ELC_Subalpine", "Fire1982_2012", "Fire8212_DEM815",
"NALC_Needle", "NALC_Shrub", "Subalp_Shrub_250buf",
"ELCSub_Fire8212DEM815", "SubShrub250_Fire8212DEM815")
mc_plot_multivariate(vars, x)
## Univariate exploration for composition
mc_plot_comp("Fire8212_DEM815", x)