Moose Composition Workflow
comp.Rd
Fit composition model for Moose using a multinomial model to capture how predictors affect composition data; calculate prediction intervals based on composition model; and extract useful summaries.
Usage
mc_check_comp(x)
mc_fit_comp(x, vars = NULL)
mc_models_comp(model_list_comp, coefs = TRUE)
mc_predict_comp(
total_model_id,
comp_model_id,
model_list_total,
model_list_comp,
x,
do_avg = FALSE,
fix_mean = FALSE,
PI = NULL
)
subset_CPI_data(CPI, ss)
pred_density_moose_CPI(CPI, ...)
Arguments
- x
A Moose data frame object.
- vars
Column names of `x` to be used as predictors for the composition model.
- model_list_comp
Named list of total composition models.
- coefs
logical, return coefficient table too.
- total_model_id
Model ID or model IDs for total moose model (can be multiple model IDs from `names(model_list_total)`).
- comp_model_id
Model ID or model IDs for composition model (single model ID from `names(model_list_comp)`).
- model_list_total
Named list of total moose models.
- do_avg
Logical, to do model averaging or not.
- fix_mean
logical, use the fixed (rounded) mean as the Multinomial size instead of the bootstrap PI counts.
- PI
Total Moose PI object.
- CPI
Composition PI object.
- ss
A subset of rows (logical or numeric vector).
- ...
Other arguments passed to underlying functions.
Examples
mc_options(B=10)
x <- read.csv(
system.file("extdata/MayoMMU_QuerriedData.csv",
package="moosecounter"))
## Prepare Moose data frame object
x <- mc_update_total(x)
## Total moose model list
vars <- c("ELC_Subalpine", "Fire1982_2012", "Fire8212_DEM815",
"NALC_Needle", "NALC_Shrub", "Subalp_Shrub_250buf",
"ELCSub_Fire8212DEM815", "SubShrub250_Fire8212DEM815")
ML <- list()
ML[["Model 0"]] <- mc_fit_total(x, dist="ZINB")
ML[["Model 1"]] <- mc_fit_total(x, vars[1:2], dist="ZINB")
ML[["Model 2"]] <- mc_fit_total(x, vars[2:3], dist="ZIP")
ML[["Model 3"]] <- mc_fit_total(x, vars[3:4], dist="ZINB")
## Composition odel list
CML <- list()
CML[['FireDEMSub']] <- mc_fit_comp(x, "Fire8212_DEM815")
## Stats from the models
mc_models_comp(CML)
## Calculate PI
CPI <- mc_predict_comp(
total_model_id="Model 3",
comp_model_id='FireDEMSub',
model_list_total=ML,
model_list_comp=CML,
x=x,
do_avg=FALSE)
## Predict density
pred_density_moose_CPI(CPI)