Relational Operators Comparing Two Intervals
ovrlap.Rd
Functions for evaluating if two intervals overlap or not.
Usage
interval1 %[o]% interval2
interval1 %)o(% interval2
interval1 %[<o]% interval2
interval1 %[o>]% interval2
interval1 %(o)% interval2
interval1 %]o[% interval2
interval1 %(<o)% interval2
interval1 %(o>)% interval2
interval1 %[]o[]% interval2
interval1 %[]o[)% interval2
interval1 %[]o(]% interval2
interval1 %[]o()% interval2
interval1 %[)o[]% interval2
interval1 %[)o[)% interval2
interval1 %[)o(]% interval2
interval1 %[)o()% interval2
interval1 %(]o[]% interval2
interval1 %(]o[)% interval2
interval1 %(]o(]% interval2
interval1 %(]o()% interval2
interval1 %()o[]% interval2
interval1 %()o[)% interval2
interval1 %()o(]% interval2
interval1 %()o()% interval2
Details
The operators define the open/closed nature of the lower/upper
limits of the intervals on the left and right hand side of the o
in the middle.
The overlap of two closed intervals, [a1, b1] and [a2, b2],
is evaluated by the %[o]%
(alias for %[]o[]%
)
operator (a1 <= b1, a2 <= b2).
Endpoints can be defined as a vector with two values
(c(a1, b1)
)or can be stored in matrix-like objects or a lists
in which case comparisons are made element-wise.
If lengths do not match, shorter objects are recycled.
These value-to-interval operators work for numeric (integer, real)
and ordered vectors, and object types which are measured at
least on ordinal scale (e.g. dates), see Examples.
Note: interval endpoints
are sorted internally thus ensuring the conditions
a1 <= b1 and a2 <= b2 is not necessary.
%)o(%
is used for the negation of two closed interval overlap,
directional evaluation is done via the operators
%[<o]%
and %[o>]%
.
The overlap of two open intervals
is evaluated by the %(o)%
(alias for %()o()%
).
%]o[%
is used for the negation of two open interval overlap,
directional evaluation is done via the operators
%(<o)%
and %(o>)%
.
Overlap operators with mixed endpoint do not have negation and directional counterparts.
Examples
## motivating examples from example(lm)
## Annette Dobson (1990) "An Introduction to Generalized Linear Models".
## Page 9: Plant Weight Data.
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2, 10, 20, labels = c("Ctl","Trt"))
weight <- c(ctl, trt)
lm.D90 <- lm(weight ~ group - 1) # omitting intercept
## compare 95% confidence of the 2 groups to each other
(CI.D90 <- confint(lm.D90))
#> 2.5 % 97.5 %
#> groupCtl 4.56934 5.49466
#> groupTrt 4.19834 5.12366
CI.D90[1,] %[o]% CI.D90[2,]
#> 2.5 %
#> TRUE
## simple interval comparisons
c(2:3) %[o]% c(0:1)
#> [1] FALSE
## vectorized comparisons
c(2:3) %[o]% list(0:4, 1:5)
#> [1] FALSE TRUE TRUE TRUE FALSE
c(2:3) %[o]% cbind(0:4, 1:5)
#> [1] FALSE TRUE TRUE TRUE FALSE
c(2:3) %[o]% data.frame(a=0:4, b=1:5)
#> [1] FALSE TRUE TRUE TRUE FALSE
list(0:4, 1:5) %[o]% c(2:3)
#> [1] FALSE TRUE TRUE TRUE FALSE
cbind(0:4, 1:5) %[o]% c(2:3)
#> [1] FALSE TRUE TRUE TRUE FALSE
data.frame(a=0:4, b=1:5) %[o]% c(2:3)
#> [1] FALSE TRUE TRUE TRUE FALSE
list(0:4, 1:5) %[o]% cbind(rep(2,5), rep(3,5))
#> [1] FALSE TRUE TRUE TRUE FALSE
cbind(rep(2,5), rep(3,5)) %[o]% list(0:4, 1:5)
#> [1] FALSE TRUE TRUE TRUE FALSE
cbind(rep(3,5),rep(4,5)) %)o(% cbind(1:5, 2:6)
#> [1] TRUE FALSE FALSE FALSE TRUE
cbind(rep(3,5),rep(4,5)) %[<o]% cbind(1:5, 2:6)
#> [1] FALSE FALSE FALSE FALSE TRUE
cbind(rep(3,5),rep(4,5)) %[o>]% cbind(1:5, 2:6)
#> [1] TRUE FALSE FALSE FALSE FALSE
## open intervals
list(0:4, 1:5) %(o)% cbind(rep(2,5), rep(3,5))
#> [1] FALSE FALSE TRUE FALSE FALSE
cbind(rep(2,5), rep(3,5)) %(o)% list(0:4, 1:5)
#> [1] FALSE FALSE TRUE FALSE FALSE
cbind(rep(3,5),rep(4,5)) %]o[% cbind(1:5, 2:6)
#> [1] TRUE TRUE FALSE TRUE TRUE
cbind(rep(3,5),rep(4,5)) %(<o)% cbind(1:5, 2:6)
#> [1] FALSE FALSE FALSE TRUE TRUE
cbind(rep(3,5),rep(4,5)) %(o>)% cbind(1:5, 2:6)
#> [1] TRUE TRUE FALSE FALSE FALSE
dt1 <- as.Date(c("2000-01-01", "2000-03-15"))
dt2 <- as.Date(c("2000-03-15", "2000-06-07"))
dt1 %[]o[]% dt2
#> [1] TRUE
dt1 %[]o[)% dt2
#> [1] TRUE
dt1 %[]o(]% dt2
#> [1] FALSE
dt1 %[]o()% dt2
#> [1] FALSE
dt1 %[)o[]% dt2
#> [1] FALSE
dt1 %[)o[)% dt2
#> [1] FALSE
dt1 %[)o(]% dt2
#> [1] FALSE
dt1 %[)o()% dt2
#> [1] FALSE
dt1 %(]o[]% dt2
#> [1] TRUE
dt1 %(]o[)% dt2
#> [1] TRUE
dt1 %(]o(]% dt2
#> [1] FALSE
dt1 %(]o()% dt2
#> [1] FALSE
dt1 %()o[]% dt2
#> [1] FALSE
dt1 %()o[)% dt2
#> [1] FALSE
dt1 %()o(]% dt2
#> [1] FALSE
dt1 %()o()% dt2
#> [1] FALSE
## watch precedence
(2 * c(1, 3)) %[o]% (c(2, 4) * 2)
#> [1] TRUE
(2 * c(1, 3)) %[o]% c(2, 4) * 2
#> [1] 2
2 * c(1, 3) %[o]% (c(2, 4) * 2)
#> [1] 0
2 * c(1, 3) %[o]% c(2, 4) * 2
#> [1] 4