Skip to contents

Estimate singing rates, effective distances, and density based on simulation objects using the QPAD approach (Solymos et al. 2013).

Usage

estimate(object, ...)
# S3 method for class 'bsims_transcript'
estimate(object, 
  method = c("qpad", "sqpad", "convolution", "naive"), ...)

Arguments

object

simulation object.

method

method.

...

other arguments passed to internal functions.

Details

The method evaluates removal design to estimate model parameters and density using the QPAD and SQPAD methodologies using the 'detect' package. Convolution implements the full-information likelihood. The Navive estimator fits GLM assuming no detection error.

The function only works with multiple time and distance intervals. It returns NA otherwise.

Value

A vector with values for singing rate (phi), effective detection distance (tau), density, and survey area.

References

Solymos, P., Matsuoka, S. M., Bayne, E. M., Lele, S. R., Fontaine, P., Cumming, S. G., Stralberg, D., Schmiegelow, F. K. A. & Song, S. J., 2013. Calibrating indices of avian density from non-standardized survey data: making the most of a messy situation. Methods in Ecology and Evolution, 4: 1047–1058. <doi:10.1111/2041-210X.12106>

Solymos, P., Lele, S. R., 2025. Single bin QPAD (SQPAD) approach for robust analysis of point count data with detection error. Ornithological Applications, xx, xx–xx.

Author

Peter Solymos

See also

Examples

set.seed(2)
phi <- 0.5                 # singing rate
tau <- 1                   # EDR by strata
dur <- 10                  # simulation duration
tbr <- c(2, 4, 6, 8, 10)   # time intervals
rbr <- c(0.5, 1, 1.5, Inf) # counting radii

l <- bsims_init(10, 0.5, 1)# landscape
p <- bsims_populate(l, 10) # population
e <- bsims_animate(p,      # events
  vocal_rate=phi, duration=dur)
d <- bsims_detect(e,       # detections
  tau=tau)
x <- bsims_transcribe(d,   # transcription
  tint=tbr, rint=rbr)

estimate(x)
#> Loading required namespace: detect
#>        density           area       cue_rate distance_param 
#>     11.3640146      2.5740766      0.4754889      0.9051818