tsallis.Rd
Function tsallis
find Tsallis diversities with any scale or the corresponding evenness measures. Function tsallisaccum
finds these statistics with accumulating sites.
tsallis(x, scales = seq(0, 2, 0.2), norm = FALSE, hill = FALSE) tsallisaccum(x, scales = seq(0, 2, 0.2), permutations = 100, raw = FALSE, subset, ...) # S3 method for tsallisaccum persp(x, theta = 220, phi = 15, col = heat.colors(100), zlim, ...)
x | Community data matrix or plotting object. |
---|---|
scales | Scales of Tsallis diversity. |
norm | Logical, if |
hill | Calculate Hill numbers. |
permutations | Usually an integer giving the number
permutations, but can also be a list of control values for the
permutations as returned by the function |
raw | If |
subset | logical expression indicating sites (rows) to keep:
missing values are taken as |
theta, phi | angles defining the viewing
direction. |
col | Colours used for surface. |
zlim | Limits of vertical axis. |
... | Other arguments which are passed to |
The Tsallis diversity (also equivalent to Patil and Taillie diversity) is a one-parametric generalised entropy function, defined as:
$$H_q = \frac{1}{q-1} (1-\sum_{i=1}^S p_i^q)$$
where \(q\) is a scale parameter, \(S\) the number of species in
the sample (Tsallis 1988, Tothmeresz 1995). This diversity is concave
for all \(q>0\), but non-additive (Keylock 2005). For \(q=0\) it
gives the number of species minus one, as \(q\) tends to 1 this
gives Shannon diversity, for \(q=2\) this gives the Simpson index
(see function diversity
).
If norm = TRUE
, tsallis
gives values normalized by the
maximum:
$$H_q(max) = \frac{S^{1-q}-1}{1-q}$$
where \(S\) is the number of species. As \(q\) tends to 1, maximum is defined as \(ln(S)\).
If hill = TRUE
, tsallis
gives Hill numbers (numbers
equivalents, see Jost 2007):
$$D_q = (1-(q-1) H)^{1/(1-q)}$$
Details on plotting methods and accumulating values can be found on
the help pages of the functions renyi
and
renyiaccum
.
Function tsallis
returns a data frame of selected
indices. Function tsallisaccum
with argument raw = FALSE
returns a three-dimensional array, where the first dimension are the
accumulated sites, second dimension are the diversity scales, and
third dimension are the summary statistics mean
, stdev
,
min
, max
, Qnt 0.025
and Qnt 0.975
. With
argument raw = TRUE
the statistics on the third dimension are
replaced with individual permutation results.
Tsallis, C. (1988) Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phis. 52, 479--487.
Tothmeresz, B. (1995) Comparison of different methods for diversity ordering. Journal of Vegetation Science 6, 283--290.
Patil, G. P. and Taillie, C. (1982) Diversity as a concept and its measurement. J. Am. Stat. Ass. 77, 548--567.
Keylock, C. J. (2005) Simpson diversity and the Shannon-Wiener index as special cases of a generalized entropy. Oikos 109, 203--207.
Jost, L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88, 2427--2439.
Plotting methods and accumulation routines are based on
functions renyi
and renyiaccum
. An object
of class 'tsallisaccum' can be used with function
rgl.renyiaccum
as well. See also settings for
persp
.
#> 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 #> 36 91 40.76595 19.77916 10.481929 6.081803 3.846109 2.625076 1.910150 1.463936 #> 19 108 47.27018 22.32602 11.498387 6.492802 4.013094 2.692466 1.936696 1.473828 #> 7 81 37.47840 18.73414 10.172688 6.004908 3.836811 2.631757 1.918091 1.469869 #> 20 99 44.47873 21.56561 11.366723 6.530095 4.077327 2.746035 1.974163 1.498140 #> 44 80 36.52805 18.09206 9.782209 5.776652 3.705016 2.555595 1.873754 1.443791 #> 50 92 41.30206 20.08829 10.663128 6.187254 3.906616 2.659292 1.929248 1.474476 #> 2 83 38.06254 18.90957 10.230614 6.028061 3.848471 2.638667 1.922477 1.472692 #> 29 85 38.51838 18.81994 10.009321 5.819419 3.688721 2.526664 1.847408 1.423613 #> 16 92 41.45601 20.19256 10.715725 6.210870 3.916821 2.663870 1.931567 1.475861 #> 48 90 40.88736 20.03984 10.677655 6.201632 3.913725 2.661754 1.929642 1.474180 #> 30 96 42.46822 20.35888 10.670374 6.133357 3.851598 2.617135 1.900131 1.455342 #> 40 79 34.49875 16.41508 8.624079 5.028357 3.234849 2.263379 1.692562 1.331193 #> 1.8 2 #> 36 1.169232 0.9648567 #> 19 1.172481 0.9655820 #> 7 1.173083 0.9672014 #> 20 1.187661 0.9748589 #> 44 1.157572 0.9578733 #> 50 1.174993 0.9679784 #> 2 1.174887 0.9683393 #> 29 1.143249 0.9481041 #> 16 1.175935 0.9686598 #> 48 1.174583 0.9676412 #> 30 1.162753 0.9602659 #> 40 1.087270 0.9137131#> 36 19 7 20 44 50 2 29 16 48 30 40 #> TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUEplot(x1)x2 <- tsallis(BCI[i,],norm=TRUE) x2#> 0 0.2 0.4 0.6 0.8 1 1.2 1.4 #> 36 1 0.8998669 0.8431295 0.8216927 0.8272622 0.8505725 0.8820846 0.9137994 #> 19 1 0.9079031 0.8537683 0.8315799 0.8347890 0.8554245 0.8846675 0.9147428 #> 7 1 0.9094899 0.8600339 0.8427936 0.8492653 0.8706729 0.8985570 0.9261475 #> 20 1 0.9168340 0.8714005 0.8563191 0.8638340 0.8853802 0.9124664 0.9383899 #> 44 1 0.8954397 0.8371683 0.8152612 0.8204162 0.8431126 0.8740718 0.9056624 #> 50 1 0.9036351 0.8503796 0.8315870 0.8385564 0.8618931 0.8922712 0.9221556 #> 2 1 0.9055048 0.8546877 0.8377974 0.8455660 0.8685692 0.8978637 0.9264249 #> 29 1 0.8987625 0.8378269 0.8104423 0.8098004 0.8281171 0.8569302 0.8885453 #> 16 1 0.9070033 0.8547937 0.8356888 0.8417570 0.8641446 0.8938075 0.9232641 #> 48 1 0.9106932 0.8602635 0.8414256 0.8466675 0.8676229 0.8957424 0.9239173 #> 30 1 0.8975551 0.8388546 0.8155960 0.8196218 0.8419326 0.8731640 0.9052902 #> 40 1 0.8544019 0.7656946 0.7230720 0.7171847 0.7382083 0.7754969 0.8189349 #> 1.6 1.8 2 #> 36 0.9407648 0.9611954 0.9754595 #> 19 0.9406572 0.9605041 0.9745226 #> 7 0.9493990 0.9669335 0.9791421 #> 20 0.9594192 0.9746101 0.9847059 #> 44 0.9330830 0.9544340 0.9698467 #> 50 0.9471031 0.9657020 0.9784999 #> 2 0.9501791 0.9678597 0.9800060 #> 29 0.9175446 0.9412749 0.9592583 #> 16 0.9479928 0.9664763 0.9791887 #> 48 0.9477911 0.9658285 0.9783927 #> 30 0.9331704 0.9547770 0.9702687 #> 40 0.8608104 0.8967433 0.9252791plot(x2)persp(mod1)