Function extracts eigenvalues from an object that has them. Many multivariate methods return such objects.

eigenvals(x, ...)
# S3 method for cca
eigenvals(x, model = c("all", "unconstrained", "constrained"),
          constrained = NULL, ...)
# S3 method for eigenvals
summary(object, ...)

Arguments

x

An object from which to extract eigenvalues.

object

An eigenvals result object.

model

Which eigenvalues to return for objects that inherit from class "cca" only.

constrained

Return only constrained eigenvalues. Deprecated as of vegan 2.5-0. Use model instead.

...

Other arguments to the functions (usually ignored)

Details

This is a generic function that has methods for cca, wcmdscale, pcnm, prcomp, princomp, dudi (of ade4), and pca and pco (of labdsv) result objects. The default method also extracts eigenvalues if the result looks like being from eigen or svd. Functions prcomp and princomp contain square roots of eigenvalues that all called standard deviations, but eigenvals function returns their squares. Function svd contains singular values, but function eigenvals returns their squares. For constrained ordination methods cca, rda and capscale the function returns the both constrained and unconstrained eigenvalues concatenated in one vector, but the partial component will be ignored. However, with argument constrained = TRUE only constrained eigenvalues are returned.

The summary of eigenvals result returns eigenvalues, proportion explained and cumulative proportion explained. The result object can have some negative eigenvalues (wcmdscale, capscale, pcnm) which correspond to imaginary axes of Euclidean mapping of non-Euclidean distances (Gower 1985). In these cases, the sum of absolute values of eigenvalues is used in calculating the proportions explained, and real axes (corresponding to positive eigenvalues) will only explain a part of total variation (Mardia et al. 1979, Gower 1985).

Value

An object of class "eigenvals", which is a vector of eigenvalues.

The summary method returns an object of class "summary.eigenvals", which is a matrix.

References

Gower, J. C. (1985). Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra and its Applications 67, 81--97.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Chapter 14 of Multivariate Analysis, London: Academic Press.

See also

Examples

data(varespec) data(varechem) mod <- cca(varespec ~ Al + P + K, varechem) ev <- eigenvals(mod) ev
#> CCA1 CCA2 CCA3 CA1 CA2 CA3 CA4 CA5 #> 0.3615566 0.1699600 0.1126167 0.3500372 0.2200788 0.1850741 0.1551179 0.1351054 #> CA6 CA7 CA8 CA9 CA10 CA11 CA12 CA13 #> 0.1002670 0.0772991 0.0536938 0.0365603 0.0350887 0.0282291 0.0170651 0.0122474 #> CA14 CA15 CA16 CA17 CA18 CA19 CA20 #> 0.0101910 0.0094701 0.0055090 0.0030529 0.0025118 0.0019485 0.0005178
#> Importance of components: #> CCA1 CCA2 CCA3 CA1 CA2 CA3 CA4 #> Eigenvalue 0.3616 0.16996 0.11262 0.3500 0.2201 0.18507 0.15512 #> Proportion Explained 0.1736 0.08159 0.05406 0.1680 0.1056 0.08884 0.07446 #> Cumulative Proportion 0.1736 0.25514 0.30920 0.4772 0.5829 0.67172 0.74618 #> CA5 CA6 CA7 CA8 CA9 CA10 CA11 #> Eigenvalue 0.13511 0.10027 0.07730 0.05369 0.03656 0.03509 0.02823 #> Proportion Explained 0.06485 0.04813 0.03711 0.02577 0.01755 0.01684 0.01355 #> Cumulative Proportion 0.81104 0.85917 0.89627 0.92205 0.93960 0.95644 0.96999 #> CA12 CA13 CA14 CA15 CA16 CA17 #> Eigenvalue 0.017065 0.012247 0.010191 0.009470 0.005509 0.003053 #> Proportion Explained 0.008192 0.005879 0.004892 0.004546 0.002644 0.001465 #> Cumulative Proportion 0.978183 0.984062 0.988954 0.993500 0.996145 0.997610 #> CA18 CA19 CA20 #> Eigenvalue 0.002512 0.0019485 0.0005178 #> Proportion Explained 0.001206 0.0009353 0.0002486 #> Cumulative Proportion 0.998816 0.9997514 1.0000000
## choose which eignevalues to return eigenvals(mod, model = "unconstrained")
#> CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 #> 0.3500372 0.2200788 0.1850741 0.1551179 0.1351054 0.1002670 0.0772991 0.0536938 #> CA9 CA10 CA11 CA12 CA13 CA14 CA15 CA16 #> 0.0365603 0.0350887 0.0282291 0.0170651 0.0122474 0.0101910 0.0094701 0.0055090 #> CA17 CA18 CA19 CA20 #> 0.0030529 0.0025118 0.0019485 0.0005178