add1.cca.Rd
Compute all single terms that can be added to or dropped from a constrained ordination model.
# S3 method for cca add1(object, scope, test = c("none", "permutation"), permutations = how(nperm=199), ...) # S3 method for cca drop1(object, scope, test = c("none", "permutation"), permutations = how(nperm=199), ...)
object | |
---|---|
scope | A formula giving the terms to be considered for adding
or dropping; see |
test | Should a permutation test be added using |
permutations | a list of control values for the permutations
as returned by the function |
... | Other arguments passed to |
With argument test = "none"
the functions will only call
add1.default
or drop1.default
. With
argument test = "permutation"
the functions will add test
results from anova.cca
. Function drop1.cca
will
call anova.cca
with argument by = "margin"
.
Function add1.cca
will implement a test for single term
additions that is not directly available in anova.cca
.
Functions are used implicitly in step
,
ordiR2step
and ordistep
. The
deviance.cca
and deviance.rda
used in
step
have no firm basis, and setting argument test
= "permutation"
may help in getting useful insight into validity of
model building. Function ordistep
calls alternately
drop1.cca
and add1.cca
with argument
test = "permutation"
and selects variables by their permutation
\(P\)-values. Meticulous use of add1.cca
and
drop1.cca
will allow more judicious model building.
The default number of permutations
is set to a low value, because
permutation tests can take a long time. It should be sufficient to
give a impression on the significances of the terms, but higher
values of permutations
should be used if \(P\) values really
are important.
Returns a similar object as add1
and drop1
.
add1
, drop1
and
anova.cca
for basic methods. You probably need these
functions with step
and ordistep
. Functions
deviance.cca
and extractAIC.cca
are used
to produce the other arguments than test results in the
output. Functions cca
, rda
and
capscale
produce result objects for these functions.
data(dune) data(dune.env) ## Automatic model building based on AIC but with permutation tests step(cca(dune ~ 1, dune.env), reformulate(names(dune.env)), test="perm")#> Start: AIC=87.66 #> dune ~ 1 #> #> Df AIC F Pr(>F) #> + Moisture 3 86.608 2.2536 0.005 ** #> + Management 3 86.935 2.1307 0.005 ** #> + A1 1 87.411 2.1400 0.055 . #> <none> 87.657 #> + Manure 4 88.832 1.5251 0.050 * #> + Use 2 89.134 1.1431 0.265 #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> Step: AIC=86.61 #> dune ~ Moisture #> #> Df AIC F Pr(>F) #> <none> 86.608 #> + Management 3 86.813 1.4565 0.075 . #> + A1 1 86.992 1.2624 0.255 #> + Use 2 87.259 1.2760 0.140 #> + Manure 4 87.342 1.3143 0.095 . #> - Moisture 3 87.657 2.2536 0.005 ** #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1#> Call: cca(formula = dune ~ Moisture, data = dune.env) #> #> Inertia Proportion Rank #> Total 2.1153 1.0000 #> Constrained 0.6283 0.2970 3 #> Unconstrained 1.4870 0.7030 16 #> Inertia is scaled Chi-square #> #> Eigenvalues for constrained axes: #> CCA1 CCA2 CCA3 #> 0.4187 0.1330 0.0766 #> #> Eigenvalues for unconstrained axes: #> CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9 CA10 CA11 #> 0.4098 0.2259 0.1761 0.1234 0.1082 0.0908 0.0859 0.0609 0.0566 0.0467 0.0419 #> CA12 CA13 CA14 CA15 CA16 #> 0.0201 0.0143 0.0099 0.0085 0.0080 #>## see ?ordistep to do the same, but based on permutation P-values if (FALSE) { ordistep(cca(dune ~ 1, dune.env), reformulate(names(dune.env))) } ## Manual model building ## -- define the maximal model for scope mbig <- rda(dune ~ ., dune.env) ## -- define an empty model to start with m0 <- rda(dune ~ 1, dune.env) ## -- manual selection and updating add1(m0, scope=formula(mbig), test="perm")#> Df AIC F Pr(>F) #> <none> 89.620 #> A1 1 89.591 1.9217 0.020 * #> Moisture 3 87.707 2.5883 0.005 ** #> Management 3 87.082 2.8400 0.005 ** #> Use 2 91.032 1.1741 0.215 #> Manure 4 89.232 1.9539 0.005 ** #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1#> Df AIC F Pr(>F) #> <none> 87.082 #> A1 1 87.424 1.2965 0.180 #> Moisture 3 85.567 1.9764 0.015 * #> Use 2 88.284 1.0510 0.400 #> Manure 3 87.517 1.3902 0.100 . #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1m0 <- update(m0, . ~ . + Moisture) ## -- included variables still significant? drop1(m0, test="perm")#> Df AIC F Pr(>F) #> <none> 85.567 #> Management 3 87.707 2.1769 0.01 ** #> Moisture 3 87.082 1.9764 0.01 ** #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1#> Df AIC F Pr(>F) #> <none> 85.567 #> A1 1 86.220 0.8359 0.635 #> Use 2 86.842 0.8027 0.790 #> Manure 3 85.762 1.1225 0.375