Automated recording units (ARU) are increasingly being used for auditory surveys. There are numerous advantages for using ARUs, e.g. recordings can be stored in perpetuity to be transcribed later, ARUs can be programmed to record at select times and dates over long time periods that would be prohibitive using human observers.
Bird point counts have been traditionally done by human observers. Combining ARU data with traditional point counts thus require an understanding of how the ARU based counts relate to counts made by human observer in the field. The best way to approach this question is by simultaneously sampling by two approaches: (1) human observers doing traditional point count by registering time and distance interval an individual bird was first detected, and (2) record the same session at the same location by an ARU to be identified/transcribed later in laboratory settings.
library(bSims) # simulations
library(detect) # multinomial models
library(mefa4) # count manipulation
library(paired) # paired sampling data
The expected value of the total count (single species) in a 10-minutes time interval using human observer (subscript \(H\)) based unlimited radius point count may be written as: \(E[Y_{H}] = D A_{H} p_{H}\) where \(Y_{H}\) is the count, \(D\) is population density, \(A\) is the area sampled, \(p_{H}\) is the probability that an average individual of the species is available for detection. The quantity \(p_{H}\) can be estimated based on removal sampling utilizing the multiple time intervals. \(A_{H}\) is often unknown, but can be estimated using the effective detection radius: \(A_{H}=\pi EDR_{H}^2\). Human observer based EDR is estimated from distance sampling.
The ARU based survey (subscript \(R\) for recorder) can distinguish individuals within distinct time intervals, but assigning these individuals is not yet possible using a single ARU. An ARU based count thus can be seen ans an unlimited radius point count where the effective area sampled is unknown. The expected value for an ARU based count for a given species may be written as: \(E[Y_{R}] = D A_{R} p_{R}\). \(p_{R}\) can be estimated based on removal sampling utilizing the multiple time intervals from the ARU based survey. The unknown sampling are can be written as \(A_{R}=\pi EDR_{R}^2\). The problem is that ARU based EDR cannot directly be estimated from the data because of the lack of multiple distance bands or individual based distance information.
The advantage of simultaneous sampling by human observers (H) and ARUs (A) is that population density (\(D=D_{H}=D_{R}\)) is identical by design. Possible mechanisms for differences in availability of bird individuals for detection (\(p_{H}\) vs. \(p_{R}\)) can include differences in how detections are made in the field vs. in laboratory (e.g. possibility of double checking).
Both \(p_{H}\) and \(p_{R}\) can be estimated from the data, and the equivalence \(p=p_{H}=p_{R}\) can be tested. So for the sake of simplicity, we assume that human observer and ARU based \(p\)’s are equal. Dividing the expected values of the counts may be written as:
\[\frac{E[Y_{R}]}{E[Y_{H}]} = \frac{D A_{R} p}{D A_{R} p} = \frac{\pi EDR_{R}^2}{\pi EDR_{H}^2} = \frac{EDR_{R}^2}{EDR_{H}^2}\]
By substituting \(EDR_{R}^2 = \Delta^2 EDR_{H}^2\) (and thus \(EDR_{R} = \Delta EDR_{H}\)) we get:
\[\frac{E[Y_{R}]}{E[Y_{H}]} = \frac{\Delta^2 EDR_{H}^2}{EDR_{H}^2} = \Delta^2\]
This means that dividing the mean counts from ARU and human observed counts would give an estimate of the squared scaling constant (\(\Delta^2\)) describing the relationship between the estimated \(EDR_{H}\) and the unknown \(EDR_{R}\).
Human observer surveys:
ARU surveys:
paired$DISTANCE[paired$SurveyType == "ARU"] <- "ARU"
with(paired, ftable(SurveyType, Interval, DISTANCE))
## DISTANCE >100 m 0-49 m 50-100 m ARU
## SurveyType Interval
## ARU 0-3 min 0 0 0 3349
## 3-5 min 0 0 0 675
## 5-10 min 0 0 0 1296
## UNK 0 0 0 3
## HUM 0-3 min 877 1270 1387 0
## 3-5 min 244 252 393 0
## 5-10 min 481 429 645 0
## UNK 7 20 12 0
Select a subset of species that we’ll work with:
xt <- as.matrix(Xtab(Count ~ PKEY + SPECIES,
data=paired[paired$SurveyType == "HUM",]))
SPP <- colnames(xt)
## number of >0 counts
ndis <- colSums(xt > 0)
## max count
maxd <- apply(xt, 2, max)
nmin <- 15
SPP <- SPP[ndis >= nmin & maxd > 1]
SPP <- SPP[!(SPP %in%
c("CANG","COLO","COGO","COME","FRGU","BCFR","UNKN","RESQ",
"CORA","AMCR","WOSP","WWCR","PISI","EVGR", "RUGR", "SACR",
"NOFL"))]
SPP
## [1] "ALFL" "AMRE" "AMRO" "BBWA" "BCCH" "BLBW" "BLJA"
## [8] "BRCR" "CAWA" "CCSP" "CEDW" "CHSP" "CMWA" "CONW"
## [15] "COYE" "CSWA" "DEJU" "FOSP" "GRAJ" "GRYE" "HAWO"
## [22] "HETH" "LEFL" "LISP" "MAWA" "MOWA" "MYWA" "NAWA"
## [29] "OCWA" "OVEN" "PAWA" "PHVI" "PIWO" "RBGR" "RBNU"
## [36] "RCKI" "REVI" "SOSP" "SWTH" "TEWA" "WISN" "WIWR"
## [43] "WTSP" "YBSA" "YRWA"
We estimated availability for human observer and ARU based counts using the time interval information. ARU based intervals were collapsed to the 0-3-5-10 minutes intervals to match the human observer based design.
xtdurH <- Xtab(Count ~ PKEY + Interval + SPECIES,
paired[paired$SurveyType == "HUM",])
xtdurH <- xtdurH[SPP]
xtdurR <- Xtab(Count ~ PKEY + Interval + SPECIES,
paired[paired$SurveyType == "ARU",])
xtdurR <- xtdurR[SPP]
Ddur <- matrix(c(3, 5, 10), nrow(xtdurH[[1]]), 3, byrow=TRUE)
Ddur2 <- rbind(Ddur, Ddur)
xdur <- nonDuplicated(paired, PKEY, TRUE)
xx <- xdur[rownames(xtdurR[[1]]),]
We estimated availability for species with at least 15 detections in both subsets of the data (making sure that the total count for at least some locations exceeded 1). We analyzed the human observer and ARU based data in a single model using survey type as a dummy variable. We tested if the estimate corresponding to survey type differed significantly from 0 using 95% confidence intervals.
The following table lists singing rates (phi
1/minute), probability of singing in a 10-minutes interval (p10
), number of detections (n
), and whether or not the confidence limits for the survey type estimate (\(\beta_1\)) contained 0 (i.e. not significant survey effect).
mdurR <- list()
mdurH <- list()
mdurHR <- list()
mdurHR1 <- list()
for (spp in SPP) {
yR <- as.matrix(xtdurR[[spp]])[,c("0-3 min","3-5 min","5-10 min")]
yH <- as.matrix(xtdurH[[spp]])[,c("0-3 min","3-5 min","5-10 min")]
yHR <- rbind(yH, yR)
mdurR[[spp]] <- cmulti(yR | Ddur ~ 1, type = "rem")
mdurH[[spp]] <- cmulti(yH | Ddur ~ 1, type = "rem")
aru01 <- rep(0:1, each=nrow(yH))
mdurHR[[spp]] <- cmulti(yHR | Ddur2 ~ 1, type = "rem")
mdurHR1[[spp]] <- cmulti(yHR | Ddur2 ~ aru01, type = "rem")
}
cfR <- sapply(mdurR, coef)
cfH <- sapply(mdurH, coef)
cfHR <- sapply(mdurHR, coef)
cfHR1 <- t(sapply(mdurHR1, coef))
names(cfR) <- names(cfH) <- names(cfHR) <- names(cfHR1) <- SPP
phiR <- exp(cfR)
phiH <- exp(cfH)
phiHR <- exp(cfHR)
## confidence interval for survey type effect
ci <- t(sapply(mdurHR1, function(z) confint(z)[2,]))
## does CI contain 0?
table(0 %[]% ci)
##
## FALSE TRUE
## 4 41
plot(phiR ~ phiH,
ylim=c(0, max(phiH, phiR)), xlim=c(0, max(phiH, phiR)),
pch=c(21, 19)[(0 %[]% ci) + 1],
xlab=expression(phi[H]), ylab=expression(phi[R]),
cex=0.5+2*phiHR)
abline(0,1)
Exercise
Which \(\phi\) estimate should we use? Can we usephiHR
? Isn’t that cheating to double the sample size? Think about what we are conditioning on when estimating \(\phi\), and what makes samples independent.
We estimate EDR from human observer based counts:
## Data for EDR estimation
xtdis <- Xtab(Count ~ PKEY + DISTANCE + SPECIES,
data=paired[paired$SurveyType == "HUM",])
xtdis <- xtdis[SPP]
for (i in seq_len(length(xtdis)))
xtdis[[i]] <- as.matrix(xtdis[[i]][,c("0-49 m", "50-100 m", ">100 m")])
head(xtdis$YRWA)
## 0-49 m 50-100 m >100 m
## 05-041-01_1 0 0 0
## 05-041-02_1 0 0 0
## 05-041-05_1 0 0 0
## 05-041-06_1 0 0 0
## 05-041-07_1 0 1 0
## 05-041-08_1 0 0 0
## distance radii
Ddis <- matrix(c(0.5, 1, Inf), nrow(xtdis[[1]]), 3, byrow=TRUE)
head(Ddis)
## [,1] [,2] [,3]
## [1,] 0.5 1 Inf
## [2,] 0.5 1 Inf
## [3,] 0.5 1 Inf
## [4,] 0.5 1 Inf
## [5,] 0.5 1 Inf
## [6,] 0.5 1 Inf
## predictors
xdis <- nonDuplicated(paired, PKEY, TRUE)
xdis <- xdis[rownames(xtdis[[1]]),]
Fitting distance sampling models for each species:
mdis <- pblapply(xtdis, function(Y) {
cmulti(Y | Ddis ~ 1, xdis, type = "dis")
})
tauH <- sapply(mdis, function(z) unname(exp(coef(z))))
edrH <- 100 * tauH
round(sort(edrH))
## CEDW CMWA BBWA BLBW BRCR NAWA LEFL AMRE HAWO PHVI
## 34 36 39 41 42 45 46 51 52 53
## YRWA MAWA CSWA BCCH OCWA CAWA COYE TEWA MOWA PAWA
## 53 54 55 56 59 61 62 63 64 65
## YBSA LISP MYWA CCSP DEJU CHSP CONW OVEN REVI GRAJ
## 67 69 69 70 70 73 74 77 81 82
## RBGR RCKI RBNU SWTH AMRO WTSP WIWR ALFL SOSP BLJA
## 85 86 88 91 92 99 101 102 114 129
## FOSP HETH GRYE WISN PIWO
## 130 138 158 164 167
hist(edrH)
Counts are often modeled in a log-linear Poisson GLM. We used GLM to estimate the unknown scaling constant from simultaneous (paired) surveys. The Poisson mean for a count made at site \(i\) by human observer is \(\lambda_{i,H} = D_{i} \pi EDR_H^2 p\). \(EDR_H\) and \(p\) are estimated using distance sampling and removal sampling, respectively. Those estimates are used to calculate a correction factor \(C = \pi EDR_H^2 p\) which is used as an offset on the log scale as \(log(\lambda_{i,H}) = log(D_{i}) + log(C) = \beta_0 + log(C)\), where \(\beta_0\) is the intercept in the GLM model.
Following the arguments above, the Poisson mean for an ARU based count made at site \(i\) is \(\lambda_{i,R} = D_{i} \pi \Delta^2 EDR_H^2 p = D_{i} \Delta^2 C\). On the log scale, this becomes \(log(\lambda_{i,R}) = log(D_{i}) + log(\Delta^2) + log(C) = \beta_0 + \beta_1 + log(C)\), where \(\beta_1\) is a contrast for ARU type surveys in the log-linear model.
We used survey type as a binary variable (\(x_i\)) with value 0 for human observers and value 1 for ARUs. So the Poisson model is generalized as: \(log(\lambda_{i}) = \beta_0 + x_i \beta_1 + log(C)\). \(\Delta\) can be calculated from \(\beta_1\) as \(\Delta = \sqrt{e^{\beta_i}}\).
We used the Poisson GLM model describe before to estimate the \(\beta_1\) coefficient corresponding to survey type as binary predictor variable, and an offset term incorporating human observer based effective area sampled and availability.
phi <- phiHR
tau <- tauH
Y <- as.matrix(Xtab(Count ~ PKEYm + SPECIES, paired))
X <- nonDuplicated(paired, PKEYm, TRUE)
X <- X[rownames(Y),]
X$distur <- ifelse(X$Disturbance != "Undisturbed", 1, 0)
X$SurveyType <- relevel(X$SurveyType, "HUM")
library(lme4)
mods <- list()
aictab <- list()
Delta <- matrix(NA, length(SPP), 3)
dimnames(Delta) <- list(SPP, c("est", "lcl", "ucl"))
#spp <- "ALFL"
for (spp in SPP) {
y <- Y[,spp]
C <- tau[spp]^2 * pi * (1-exp(-phi[spp]))
off <- rep(log(C), nrow(X))
mod0 <- glm(y ~ 1, X, offset=off, family=poisson)
mod1 <- glm(y ~ SurveyType, X, offset=off, family=poisson)
mod2 <- glm(y ~ SurveyType + distur, X, offset=off, family=poisson)
aic <- AIC(mod0, mod1, mod2)
aic$delta_AIC <- aic$AIC - min(aic$AIC)
aictab[[spp]] <- aic
Best <- get(rownames(aic)[aic$delta_AIC == 0])
#summary(Best)
mods[[spp]] <- Best
## this is Monte Carlo based CI, no need for Delta method
bb <- MASS::mvrnorm(10^4, coef(mod1), vcov(mod1))
Delta[spp,] <- c(sqrt(exp(coef(mod1)["SurveyTypeARU"])),
quantile(sqrt(exp(bb[,"SurveyTypeARU"])), c(0.025, 0.975)))
}
aic_support <- t(sapply(aictab, function(z) z[,3]))
round(aic_support)
## [,1] [,2] [,3]
## ALFL 247 244 0
## AMRE 65 66 0
## AMRO 26 21 0
## BBWA 22 23 0
## BCCH 28 29 0
## BLBW 16 18 0
## BLJA 5 7 0
## BRCR 27 29 0
## CAWA 18 20 0
## CCSP 68 68 0
## CEDW 9 11 0
## CHSP 6 5 0
## CMWA 23 25 0
## CONW 20 21 0
## COYE 14 16 0
## CSWA 22 23 0
## DEJU 102 99 0
## FOSP 97 98 0
## GRAJ 0 0 0
## GRYE 6 8 0
## HAWO 0 1 1
## HETH 19 17 0
## LEFL 0 2 4
## LISP 50 52 0
## MAWA 0 1 0
## MOWA 0 2 3
## MYWA 34 36 0
## NAWA 0 1 1
## OCWA 132 133 0
## OVEN 378 375 0
## PAWA 126 128 0
## PHVI 0 2 3
## PIWO 8 10 0
## RBGR 0 2 1
## RBNU 37 38 0
## RCKI 13 9 0
## REVI 23 21 0
## SOSP 65 66 0
## SWTH 37 39 0
## TEWA 22 15 0
## WISN 1 3 0
## WIWR 35 35 0
## WTSP 167 168 0
## YBSA 19 18 0
## YRWA 26 10 0
The following table show the estimate of \(\Delta\) for each species, and the corresponding estimates of effective detection radius (EDR) in meters and effective area sampled (\(A\)) in ha:
Species EDR_H EDR_R A_H A_R Delta.est
ALFL ALFL 102 88 3.28 2.43 0.860
AMRE AMRE 51 53 0.81 0.88 1.041
AMRO AMRO 92 74 2.67 1.72 0.803
BBWA BBWA 39 37 0.48 0.42 0.939
BCCH BCCH 56 51 0.99 0.81 0.904
BLBW BLBW 41 39 0.53 0.48 0.951
BLJA BLJA 129 132 5.24 5.45 1.020
BRCR BRCR 42 44 0.56 0.62 1.047
CAWA CAWA 61 61 1.17 1.17 1.000
CCSP CCSP 70 55 1.53 0.95 0.788
CEDW CEDW 34 34 0.36 0.36 1.000
CHSP CHSP 73 67 1.68 1.41 0.915
CMWA CMWA 36 39 0.42 0.48 1.074
CONW CONW 74 66 1.73 1.35 0.883
COYE COYE 62 60 1.21 1.12 0.959
CSWA CSWA 55 52 0.95 0.84 0.937
DEJU DEJU 70 59 1.54 1.11 0.849
FOSP FOSP 130 145 5.35 6.56 1.108
GRAJ GRAJ 82 75 2.13 1.76 0.910
GRYE GRYE 158 147 7.83 6.83 0.934
HAWO HAWO 52 44 0.87 0.60 0.832
HETH HETH 138 127 6.02 5.05 0.915
LEFL LEFL 46 44 0.67 0.60 0.949
LISP LISP 69 70 1.49 1.54 1.016
MAWA MAWA 54 51 0.91 0.82 0.948
MOWA MOWA 64 62 1.27 1.22 0.976
MYWA MYWA 69 69 1.50 1.49 0.996
NAWA NAWA 45 50 0.65 0.79 1.104
OCWA OCWA 59 53 1.08 0.90 0.913
OVEN OVEN 77 71 1.86 1.60 0.929
PAWA PAWA 65 65 1.34 1.34 1.000
PHVI PHVI 53 53 0.87 0.87 1.000
PIWO PIWO 167 177 8.75 9.87 1.062
RBGR RBGR 85 91 2.29 2.58 1.062
RBNU RBNU 88 82 2.42 2.09 0.929
RCKI RCKI 86 74 2.32 1.74 0.864
REVI REVI 81 75 2.04 1.79 0.935
SOSP SOSP 114 103 4.08 3.35 0.906
SWTH SWTH 91 90 2.59 2.53 0.989
TEWA TEWA 63 56 1.24 0.98 0.890
WISN WISN 164 170 8.44 9.06 1.036
WIWR WIWR 101 93 3.22 2.70 0.917
WTSP WTSP 99 96 3.08 2.92 0.974
YBSA YBSA 67 59 1.43 1.08 0.868
YRWA YRWA 53 33 0.90 0.33 0.609
Delta.lcl Delta.ucl
ALFL 0.749 0.992
AMRE 0.901 1.210
AMRO 0.682 0.945
BBWA 0.803 1.093
BCCH 0.732 1.109
BLBW 0.780 1.163
BLJA 0.845 1.240
BRCR 0.880 1.246
CAWA 0.768 1.293
CCSP 0.585 1.058
CEDW 0.848 1.179
CHSP 0.831 1.005
CMWA 0.825 1.400
CONW 0.700 1.116
COYE 0.722 1.269
CSWA 0.813 1.085
DEJU 0.742 0.974
FOSP 0.835 1.463
GRAJ 0.796 1.045
GRYE 0.739 1.176
HAWO 0.615 1.128
HETH 0.837 1.000
LEFL 0.756 1.194
LISP 0.794 1.306
MAWA 0.853 1.054
MOWA 0.851 1.117
MYWA 0.883 1.126
NAWA 0.902 1.360
OCWA 0.747 1.109
OVEN 0.873 0.991
PAWA 0.827 1.206
PHVI 0.783 1.286
PIWO 0.885 1.269
RBGR 0.857 1.316
RBNU 0.788 1.096
RCKI 0.769 0.973
REVI 0.874 1.001
SOSP 0.686 1.197
SWTH 0.900 1.083
TEWA 0.826 0.959
WISN 0.833 1.279
WIWR 0.816 1.029
WTSP 0.923 1.029
YBSA 0.732 1.027
YRWA 0.479 0.774
But wait, if we started from expected values, shouldn’t ratio of the mean counts give us \(\Delta^2\)? Let’s see if we can get a similar \(\Delta\) value from mean counts:
(gm <- groupMeans(Y[,SPP], 1, X$SurveyType))
## ALFL AMRE AMRO BBWA
## ARU 0.2151589 0.2200489 0.1418093 0.1809291
## HUM 0.2909535 0.2029340 0.2200489 0.2053790
## BCCH BLBW BLJA BRCR
## ARU 0.09779951 0.1149144 0.1271394 0.1662592
## HUM 0.11980440 0.1271394 0.1222494 0.1515892
## CAWA CCSP CEDW CHSP
## ARU 0.06845966 0.04400978 0.1711491 0.4889976
## HUM 0.06845966 0.07090465 0.1711491 0.5843521
## CMWA CONW COYE CSWA
## ARU 0.07334963 0.07823961 0.05623472 0.2127139
## HUM 0.06356968 0.10024450 0.06112469 0.2420538
## DEJU FOSP GRAJ GRYE
## ARU 0.2273839 0.06601467 0.2249389 0.08312958
## HUM 0.3154034 0.05378973 0.2713936 0.09535452
## HAWO HETH LEFL LISP
## ARU 0.04400978 0.5427873 0.08801956 0.07823961
## HUM 0.06356968 0.6479218 0.09779951 0.07579462
## MAWA MOWA MYWA NAWA
## ARU 0.4132029 0.2493888 0.3251834 0.1222494
## HUM 0.4596577 0.2616137 0.3276284 0.1002445
## OCWA OVEN PAWA PHVI
## ARU 0.1100244 1.127139 0.1344743 0.07579462
## HUM 0.1320293 1.305623 0.1344743 0.07579462
## PIWO RBGR RBNU RCKI
## ARU 0.1515892 0.10757946 0.1540342 0.2958435
## HUM 0.1344743 0.09535452 0.1784841 0.3960880
## REVI SOSP SWTH TEWA
## ARU 0.9290954 0.05623472 0.5281174 0.7432763
## HUM 1.0635697 0.06845966 0.5403423 0.9388753
## WISN WIWR WTSP YBSA
## ARU 0.1075795 0.3080685 1.559902 0.1418093
## HUM 0.1002445 0.3667482 1.643032 0.1882641
## YRWA
## ARU 0.05623472
## HUM 0.15158924
Delta_summary$Delta.emp <- sqrt(gm["ARU",] / gm["HUM",])
plot(Delta.est ~ Delta.emp, Delta_summary,
col=c(2,1)[(1 %[]% Delta[,-1]) + 1])
abline(0, 1)
abline(h=1, v=1, lty=2)
It looks like the fancy modeling was all for nothing, theory prevailed. But it is always nice when things work out as expected.
We can also see that \(\Delta\) (especially the significant ones) tended to be less than 1, indicating that overall EDR for ARUs is slightly smaller that for human point counts. \(\Delta\) was significantly different from 1 only for relatively few species.
Exercise
Can we pool all species’ data together to estimate an overall \(\Delta\) value? Would that characterize this particular ARU type well enough? What are some of the arguments against this pooling? What might be driving the variation across species?Now we will pretend that we have no paired design. See how well fixed effects can handle the data integration without calibration.
i <- sample(levels(X$PKEY), floor(nlevels(X$PKEY)/2))
ss <- c(which(X$PKEY %in% i), which(!(X$PKEY %in% i)))
mods2 <- list()
for (spp in SPP) {
y <- Y[ss,spp]
C <- tau[spp]^2 * pi * (1-exp(-phi[spp]))
off <- rep(log(C), length(ss))
mod <- glm(y ~ SurveyType, X[ss,], offset=off, family=poisson)
mods2[[spp]] <- mod
}
Delta_summary$Delta.fix <- sapply(mods2, function(z) {
sqrt(exp(coef(z)[2]))
})
plot(Delta.fix ~ Delta.emp, Delta_summary)
abline(0, 1)
abline(h=1, v=1, lty=2)
Use the script below to push the fixed effects method to the limit and see where it fails. We will explore the following two situations: (1) sample size and number of detections is small, (2) sampling is biased with respect to habitat strata.
X$open <- ifelse(X$Class_Name %in% c("Open Herb/Grass",
"Open coniferous","Open Mature Deciduous","Open Mixed",
"Open Northern","Open Young Deciduous",
"Open Young Mixed","Poorly Drained"), 1, 0)
## proportion of samples from ARUs (original)
prop_aru <- 0.5
## proportion of ARU samples coming from open habitats
prop_open <- 0.6
n_aru <- round(nrow(X) * prop_aru)
n_hum <- nrow(X) - n_aru
w_aru <- prop_open*X$open + (1-prop_open)*(1-X$open)
w_hum <- (1-prop_open)*X$open + prop_open*(1-X$open)
id_aru <- sample(which(X$SurveyType == "ARU"), n_aru,
replace=TRUE, prob=w_aru[X$SurveyType == "ARU"])
id_hum <- sample(which(X$SurveyType == "HUM"), n_hum,
replace=TRUE, prob=w_hum[X$SurveyType == "HUM"])
ss <- c(id_aru, id_hum)
addmargins(with(X[ss,], table(open, SurveyType)))
mods3 <- list()
for (spp in SPP) {
y <- Y[ss,spp]
C <- tau[spp]^2 * pi * (1-exp(-phi[spp]))
off <- rep(log(C), length(ss))
mod <- glm(y ~ SurveyType, X[ss,], offset=off, family=poisson)
mods3[[spp]] <- mod
}
Est <- sapply(mods3, function(z) sqrt(exp(coef(z)[2])))
plot(Est ~ Delta.emp, Delta_summary)
abline(0, 1)
abline(h=1, v=1, lty=2)
abline(lm(Est ~ Delta.emp, Delta_summary), col=2)
prop_open
0 vs. 1 leads to different deviation from the 1:1 line, eplain why.