All models are wrong, but some are useful – Box
This chapter will provide all the foundations we need for the coming chapters. It is not intended as a general and all-exhaustive introduction to regression techniques, but rather the minimum requirement moving forwards. We will also hone our data processing and plotting skills.
library(mefa4) # data manipulation
library(mgcv) # GAMs
library(pscl) # zero-inflated models
library(lme4) # GLMMs
library(MASS) # Negative Binomial GLM
library(partykit) # regression trees
library(intrval) # interval magic
library(opticut) # optimal partitioning
library(visreg) # regression visualization
library(ResourceSelection) # marginal effects
library(MuMIn) # multi-model inference
source("src/functions.R") # some useful stuff
load("data/josm-data.rda") # JOSM data
Let’s pick a species, Ovenbird (OVEN
), that is quite common and abundant in the data set. We put together a little data set to work with:
spp <- "OVEN"
ytot <- Xtab(~ SiteID + SpeciesID, josm$counts[josm$counts$DetectType1 != "V",])
ytot <- ytot[,colSums(ytot > 0) > 0]
x <- data.frame(
josm$surveys,
y=as.numeric(ytot[rownames(josm$surveys), spp]))
x$FOR <- x$Decid + x$Conif+ x$ConifWet # forest
x$AHF <- x$Agr + x$UrbInd + x$Roads # 'alienating' human footprint
x$WET <- x$OpenWet + x$ConifWet + x$Water # wet + water
cn <- c("Open", "Water", "Agr", "UrbInd", "SoftLin", "Roads", "Decid",
"OpenWet", "Conif", "ConifWet")
x$HAB <- droplevels(find_max(x[,cn])$index) # drop empty levels
x$DEC <- ifelse(x$HAB == "Decid", 1, 0)
table(x$y)
##
## 0 1 2 3 4 5 6
## 2493 883 656 363 132 29 13
The null model states that the expected values of the count at all locations are identical: \(E[Y_i]=\lambda\) (\(i=1,...,n\)), where \(Y_i\) is a random variable that follows a Poisson distribution with mean \(\lambda\): \((Y_i \mid \lambda) \sim Poisson(\lambda)\). The observation (\(y_i\)) is a realization of the random variables \(Y\) at site \(i\), these observations are independent and identically distributed (i.i.d.), and we have \(n\) observations in total.
Saying the the distribution is Poisson is an assumption in itself. For example we assume that the variance equals the mean (\(V(\mu)=\mu\)).
mP0 <- glm(y ~ 1, data=x, family=poisson)
mean(x$y)
## [1] 0.8831254
mean(fitted(mP0))
## [1] 0.8831254
exp(coef(mP0))
## (Intercept)
## 0.8831254
The family=poisson
specification implicitly assumes that we use a logarithmic link functions, that is to say that \(log(\lambda) = \beta_0\), or equivalently: \(\lambda = e^{\beta_0}\). The mean of the observations equal the mean of the fitted values, as expected.
The logarithmic function is called the link function, its inverse, the exponential function is called the inverse link function. The model family has these convenently stored for us:
mP0$family
##
## Family: poisson
## Link function: log
mP0$family$linkfun
## function (mu)
## log(mu)
## <environment: namespace:stats>
mP0$family$linkinv
## function (eta)
## pmax(exp(eta), .Machine$double.eps)
## <environment: namespace:stats>
Inspect the summary
summary(mP0)
##
## Call:
## glm(formula = y ~ 1, family = poisson, data = x)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.329 -1.329 -1.329 1.018 3.572
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) -0.12429 0.01574 -7.895
## Pr(>|z|)
## (Intercept) 0.0000000000000029 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 7424.8 on 4568 degrees of freedom
## Residual deviance: 7424.8 on 4568 degrees of freedom
## AIC: 12573
##
## Number of Fisher Scoring iterations: 6
Notice:
These indicate that our parametric model (Poisson error distribution, constant expected value) is not quite right. See if we can improve that somehow and explain more of the variation.
We can pick an error distribution that would fit the residuals around the constant expected value better (i.e. using random effects). But this would be a really useless exercise because we would not learn about what is driving the variation in the counts. Thus we would have a really hard time predicting abundance of the species for unsampled locations. We would be right on average, but we wouldn’t be able to tell how abundance varies along e.g. a disturbance gradient.
An alternative approach would be to find predictors that could explain the variation.
Now, in the absence of info about species biology, we are looking at a blank page. How should we proceed? What kind of covariate (linear predictor) should we use? We can do a quick and dirty exploration to see what are the likely candidates. We use a regression tree (ctree
refers to conditional trees). It is a non-parametric method based on binary recursive partitioning in a conditional inference framework.
This means that binary splits are made along the predictor variables, and the explanatory power of the split is assessed based on how it maximized difference between the splits and minimized the difference inside the buckets created by the splits.
It is called conditional, because every new split is conditional on the previous splits (difference can be measured in many different ways, think e.g. sum of squares). The stopping rule in this implementation is based on permutation tests (see ?ctree
or details and references).
mCT <- ctree(y ~ Open + Water + Agr + UrbInd + SoftLin + Roads +
Decid + OpenWet + Conif + ConifWet, data=x)
plot(mCT)
The model can be seen as a piecewise constant regression, where each bucket (defined by the splits along the tree) yields a constant predictions based on the mean of the observations in the bucket. Any new data classified into the same bucket will get the same value. There is no notion of uncertainty (confidence or prediction intervals) in this nonparameric model.
But we see something very useful: the proportion of deciduous forest in the landscape seems to be vary influential for Ovenbird abundance. The closer the variable appears to tree base of the tree the more influence it has.
With this new found knowledge, let’s fit a parametric (Poisson) linear model using Decid
as a predictor:
mP1 <- glm(y ~ Decid, data=x, family=poisson)
mean(x$y)
## [1] 0.8831254
mean(fitted(mP1))
## [1] 0.8831254
coef(mP1)
## (Intercept) Decid
## -1.164268 2.133832
Same as before, the mean of the observations equal the mean of the fitted values. But instead of only the intercept, now we have 2 coefficients estimated. Our linear predictor thus looks like: \(log(\lambda_i) = \beta_0 + \beta_1 x_{1i}\). This means that expected abundance is\(e^{\beta_0}\) where Decid
=0, \(e^{\beta_0}e^{\beta_1}\) where Decid
=1, and \(e^{\beta_0+\beta_1 x_{1}}\) in between.
The relationship can be visualized by plotting the fitted values against the predictor, or using the coefficients to make predictions using our formula:
## make a sequence between 0 and 1
dec <- seq(from=0, to=1, by=0.01)
## predict lambda
lam <- exp(coef(mP1)[1] + coef(mP1)[2] * dec)
plot(fitted(mP1) ~ Decid, x, pch=19, col="grey") # fitted
lines(lam ~ dec, col=2) # our predicted
rug(x$Decid) # observed x values
The model summary tells us that resudials are not quite right (we would expect 0 median and symmertic tails), in line with residual deviance still being higher than residual degrees of freedom (these should be close if the Poisson assumption holds, but it is much better than what we saw for the null model).
However, we learned something important. The Decid
effect is significant (meaning that the effect size is large compared to the standard error):
summary(mP1)
##
## Call:
## glm(formula = y ~ Decid, family = poisson, data = x)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2909 -0.9772 -0.7901 0.4687 4.1970
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) -1.16427 0.03515 -33.12
## Decid 2.13383 0.05369 39.74
## Pr(>|z|)
## (Intercept) <0.0000000000000002 ***
## Decid <0.0000000000000002 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 7424.8 on 4568 degrees of freedom
## Residual deviance: 5736.9 on 4567 degrees of freedom
## AIC: 10887
##
## Number of Fisher Scoring iterations: 6
Note: we see a significant (<0.05) \(P\)-value for the intercept as well. It is totally meaningless. That \(P\)-value relates to the hull hypothesis of the intercept (\(\beta_0\)) being 0. There is nothing special about that, it is like saying the average abundance is different from 1. But if \(\beta_1\) is significantly different from 0, it means that the main effect has non-negligible effect on the mean abundance.
We can compare this model to the null (constant, intercept-only) model:
AIC(mP0, mP1)
## df AIC
## mP0 1 12572.97
## mP1 2 10887.10
BIC(mP0, mP1)
## df BIC
## mP0 1 12579.40
## mP1 2 10899.95
model.sel(mP0, mP1)
## Model selection table
## (Intrc) Decid family df logLik AICc
## mP1 -1.1640 2.134 poisson(log) 2 -5441.550 10887.1
## mP0 -0.1243 poisson(log) 1 -6285.486 12573.0
## delta weight
## mP1 0.00 1
## mP0 1685.87 0
## Models ranked by AICc(x)
R2dev(mP0, mP1)
## R2 R2adj Deviance Dev0 DevR
## mP0 0.000 0.000 0.000 7424.779 7424.779
## mP1 0.227 0.227 1687.873 7424.779 5736.906
## df0 dfR p_value
## mP0 4568.000 4568.000 <0.0000000000000002 ***
## mP1 4568.000 4567.000 <0.0000000000000002 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
AIC uses the negative log likelihood and the number of parameters as penalty. Smaller value indicate a model that is closer to the (unknowable) true model (caveat: this statement is true only asymptotically, i.e. it holds for very large sample sizes). For small samples, we often use BIC (more penalty for complex models when sample size is small), or AICc (as in MuMIn::model.sel()
).
The other little table returned by R2dev()
shows deviance based (quasi) \(R^2\) and adjusted \(R^2\) for some GLM classes, just for the sake of completeness. The Chi-squared based test indicates good fit when the \(p\)-value is high (probability of being distributed according the Poisson).
None of these two models is a particularly good fit in terms of the parametric distribution. This, however does not mean these models are useless for making inferential statements about ovenbirds. How useful these statements are, that is another question. Let’s dive into confidence and prediction intervals a bit.
B <- 2000
alpha <- 0.05
xnew <- data.frame(Decid=seq(0, 1, 0.01))
CI0 <- predict_sim(mP0, xnew, interval="confidence", level=1-alpha, B=B)
PI0 <- predict_sim(mP0, xnew, interval="prediction", level=1-alpha, B=B)
CI1 <- predict_sim(mP1, xnew, interval="confidence", level=1-alpha, B=B)
PI1 <- predict_sim(mP1, xnew, interval="prediction", level=1-alpha, B=B)
## nominal coverage is 95%
sum(x$y %[]% predict_sim(mP0, interval="prediction", level=1-alpha, B=B)[,c("lwr", "upr")]) / nrow(x)
## [1] 0.9619173
sum(x$y %[]% predict_sim(mP1, interval="prediction", level=1-alpha, B=B)[,c("lwr", "upr")]) / nrow(x)
## [1] 0.9702342
An estimate is said to have good coverage when the prediction intervals encompass the right amount of the observations. When the nominal level is 95% (\(100 \times (1-\alpha)\), where \(\alpha\) is Type I. error rate, rejecting a true null hypothesis), we expect 95% of the observations fall within the 95% prediction interval. The prediction interval includes the uncertainty around the coefficients (confidence intervals, uncertainty in \(\hat{\lambda}\)) and the stochasticity coming from the Poisson distribution (\(Y_i \sim Poisson(\hat{\lambda})\)).
The code above calculate the confidence and prediction intervals for the two models. We also compared the prediction intervals and the nominal levels, and those were quite close (ours being a bit more conservative), hinting that maybe the Poisson distributional assumption is not very bad after all, but we’ll come back to this later.
Let’s see our confidence and prediction intervals for the two models:
yj <- jitter(x$y, 0.5)
plot(yj ~ Decid, x, xlab="Decid", ylab="E[Y]",
ylim=c(0, max(PI1$upr)+1), pch=19, col="#bbbbbb33", main="P0 vs P1")
polygon(c(xnew$Decid, rev(xnew$Decid)),
c(PI0$lwr, rev(PI0$upr)), border=NA, col="#0000ff44")
polygon(c(xnew$Decid, rev(xnew$Decid)),
c(CI0$lwr, rev(CI0$upr)), border=NA, col="#0000ff44")
lines(CI0$fit ~ xnew$Decid, lty=1, col=4)
polygon(c(xnew$Decid, rev(xnew$Decid)),
c(PI1$lwr, rev(PI1$upr)), border=NA, col="#ff000044")
polygon(c(xnew$Decid, rev(xnew$Decid)),
c(CI1$lwr, rev(CI1$upr)), border=NA, col="#ff000044")
lines(CI1$fit ~ xnew$Decid, lty=1, col=2)
legend("topleft", bty="n", fill=c("#0000ff44", "#ff000044"), lty=1, col=c(4,2),
border=NA, c("Null", "Decid"))
What can we conclude from this plot?
Generalized additive models (GAMs) are semi-parametric, meaning that parametric assumptions apply, but responses are modelled more flexibly.
mGAM <- mgcv::gam(y ~ s(Decid), x, family=poisson)
summary(mGAM)
##
## Family: poisson
## Link function: log
##
## Formula:
## y ~ s(Decid)
##
## Parametric coefficients:
## Estimate Std. Error z value
## (Intercept) -0.5606 0.0283 -19.81
## Pr(>|z|)
## (Intercept) <0.0000000000000002 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df Chi.sq p-value
## s(Decid) 8.557 8.937 1193 <0.0000000000000002 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.239 Deviance explained = 29%
## UBRE = 0.15808 Scale est. = 1 n = 4569
plot(mGAM)
Compare the 4 predictions we have so far
fitCT <- predict(mCT, x[order(x$Decid),])
fitGAM <- predict(mGAM, xnew, type="response")
plot(yj ~ Decid, x, xlab="Decid", ylab="E[Y]",
ylim=c(0, max(PI1$upr)+1), pch=19, col="#bbbbbb33", main="P0")
lines(CI0$fit ~ xnew$Decid, lty=1, col=1)
lines(CI1$fit ~ xnew$Decid, lty=1, col=2)
lines(fitCT ~ x$Decid[order(x$Decid)], lty=1, col=3)
lines(fitGAM ~ xnew$Decid, lty=1, col=4)
legend("topleft", bty="n", lty=1, col=1:4,
legend=c("Null", "Decid", "ctree", "GAM"))
Play with GAM and other variables to understand response curves: plot(mgcv::gam(y ~ s(<variable_name>), data=x, family=poisson))
We can use polynomial terms to approximate the GAM fit:
mP12 <- glm(y ~ Decid + I(Decid^2), data=x, family=poisson)
mP13 <- glm(y ~ Decid + I(Decid^2) + I(Decid^3), data=x, family=poisson)
mP14 <- glm(y ~ Decid + I(Decid^2) + I(Decid^3) + I(Decid^4), data=x, family=poisson)
model.sel(mP1, mP12, mP13, mP14, mGAM)
## Model selection table
## (Int) Dcd Dcd^2 Dcd^3 Dcd^4 s(Dcd)
## mGAM -0.5606 +
## mP14 -2.6640 16.640 -38.60 41.470 -16.31
## mP13 -2.3910 11.400 -16.31 8.066
## mP12 -1.9240 6.259 -3.97
## mP1 -1.1640 2.134
## family class df logLik AICc delta
## mGAM poisson(log) gam 9 -5209.172 10437.5 0.00
## mP14 poisson(log) glm 5 -5215.401 10440.8 3.31
## mP13 poisson(log) glm 4 -5226.456 10460.9 23.42
## mP12 poisson(log) glm 3 -5268.767 10543.5 106.04
## mP1 poisson(log) glm 2 -5441.550 10887.1 449.60
## weight
## mGAM 0.84
## mP14 0.16
## mP13 0.00
## mP12 0.00
## mP1 0.00
## Models ranked by AICc(x)
Not a surprise that the most complex model won. GAM was more complex than that (see df
column).
pr <- cbind(
predict(mP1, xnew, type="response"),
predict(mP12, xnew, type="response"),
predict(mP13, xnew, type="response"),
predict(mP14, xnew, type="response"),
fitGAM)
matplot(xnew$Decid, pr, lty=1, type="l",
xlab="Decid", ylab="E[Y]")
legend("topleft", lty=1, col=1:5, bty="n",
legend=c("Linear", "Quadratic", "Cubic", "Quartic", "GAM"))
Let’s see how these affect our prediction intervals:
CI12 <- predict_sim(mP12, xnew, interval="confidence", level=1-alpha, B=B)
PI12 <- predict_sim(mP12, xnew, interval="prediction", level=1-alpha, B=B)
CI13 <- predict_sim(mP13, xnew, interval="confidence", level=1-alpha, B=B)
PI13 <- predict_sim(mP13, xnew, interval="prediction", level=1-alpha, B=B)
CI14 <- predict_sim(mP14, xnew, interval="confidence", level=1-alpha, B=B)
PI14 <- predict_sim(mP14, xnew, interval="prediction", level=1-alpha, B=B)
op <- par(mfrow=c(2,2))
plot(yj ~ Decid, x, xlab="Decid", ylab="E[Y]",
ylim=c(0, max(PI1$upr)+1), pch=19, col="#bbbbbb33", main="Linear")
polygon(c(xnew$Decid, rev(xnew$Decid)),
c(PI1$lwr, rev(PI1$upr)), border=NA, col="#0000ff44")
polygon(c(xnew$Decid, rev(xnew$Decid)),
c(CI1$lwr, rev(CI1$upr)), border=NA, col="#0000ff88")
lines(CI1$fit ~ xnew$Decid, lty=1, col=4)
lines(fitGAM ~ xnew$Decid, lty=2, col=1)
plot(yj ~ Decid, x, xlab="Decid", ylab="E[Y]",
ylim=c(0, max(PI1$upr)+1), pch=19, col="#bbbbbb33", main="Quadratic")
polygon(c(xnew$Decid, rev(xnew$Decid)),
c(PI12$lwr, rev(PI12$upr)), border=NA, col="#0000ff44")
polygon(c(xnew$Decid, rev(xnew$Decid)),
c(CI12$lwr, rev(CI12$upr)), border=NA, col="#0000ff88")
lines(CI12$fit ~ xnew$Decid, lty=1, col=4)
lines(fitGAM ~ xnew$Decid, lty=2, col=1)
plot(yj ~ Decid, x, xlab="Decid", ylab="E[Y]",
ylim=c(0, max(PI1$upr)+1), pch=19, col="#bbbbbb33", main="Cubic")
polygon(c(xnew$Decid, rev(xnew$Decid)),
c(PI13$lwr, rev(PI13$upr)), border=NA, col="#0000ff44")
polygon(c(xnew$Decid, rev(xnew$Decid)),
c(CI13$lwr, rev(CI13$upr)), border=NA, col="#0000ff88")
lines(CI13$fit ~ xnew$Decid, lty=1, col=4)
lines(fitGAM ~ xnew$Decid, lty=2, col=1)
plot(yj ~ Decid, x, xlab="Decid", ylab="E[Y]",
ylim=c(0, max(PI1$upr)+1), pch=19, col="#bbbbbb33", main="Quartic")
polygon(c(xnew$Decid, rev(xnew$Decid)),
c(PI14$lwr, rev(PI14$upr)), border=NA, col="#0000ff44")
polygon(c(xnew$Decid, rev(xnew$Decid)),
c(CI14$lwr, rev(CI14$upr)), border=NA, col="#0000ff88")
lines(CI14$fit ~ xnew$Decid, lty=1, col=4)
lines(fitGAM ~ xnew$Decid, lty=2, col=1)
par(op)
Categorical variables are expanded into a model matrix before parameter estimation. The model matrix usually contains indicator variables for each level (value 1 when factor value equals a particular label, 0 otherwise) except for the reference category (check relevel
if you want to change the reference category).
The estimate for the reference category comes from the intercept, the rest of the estimates are relative to the reference category. In the log-linear model example this means a ratio.
head(model.matrix(~DEC, x))
## (Intercept) DEC
## CL10102 1 1
## CL10106 1 0
## CL10108 1 0
## CL10109 1 1
## CL10111 1 1
## CL10112 1 1
mP2 <- glm(y ~ DEC, data=x, family=poisson)
summary(mP2)
##
## Call:
## glm(formula = y ~ DEC, family = poisson, data = x)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.6914 -0.9210 -0.9210 0.4489 4.5433
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) -0.85768 0.03080 -27.84
## DEC 1.21565 0.03584 33.92
## Pr(>|z|)
## (Intercept) <0.0000000000000002 ***
## DEC <0.0000000000000002 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 7424.8 on 4568 degrees of freedom
## Residual deviance: 6095.5 on 4567 degrees of freedom
## AIC: 11246
##
## Number of Fisher Scoring iterations: 6
coef(mP2)
## (Intercept) DEC
## -0.8576802 1.2156499
The estimate for a non-deciduous landscape is \(e^{\beta_0}\), and it is \(e^{\beta_0}e^{\beta_1}\) for deciduous landscapes. (Of course such binary classification at the landscape (1 km\(^2\)) level doesn’t really makes sense for various reasons.)
boxplot(Decid ~ DEC, x)
model.sel(mP1, mP2)
## Model selection table
## (Intrc) Decid DEC family df logLik
## mP1 -1.1640 2.134 poisson(log) 2 -5441.550
## mP2 -0.8577 1.216 poisson(log) 2 -5620.871
## AICc delta weight
## mP1 10887.1 0.00 1
## mP2 11245.7 358.64 0
## Models ranked by AICc(x)
R2dev(mP1, mP2)
## R2 R2adj Deviance Dev0 DevR
## mP1 0.227 0.227 1687.873 7424.779 5736.906
## mP2 0.179 0.179 1329.230 7424.779 6095.549
## df0 dfR p_value
## mP1 4568.000 4567.000 <0.0000000000000002 ***
## mP2 4568.000 4567.000 <0.0000000000000002 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Having estimates for each land cover type improves the model, but the model using continuous variable is still better
mP3 <- glm(y ~ HAB, data=x, family=poisson)
summary(mP3)
##
## Call:
## glm(formula = y ~ HAB, family = poisson, data = x)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.6914 -0.8732 -0.8168 0.4489 4.8315
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.3863 0.5774 -2.401 0.01634 *
## HABWater 1.0296 0.6901 1.492 0.13568
## HABAgr 0.6931 0.9129 0.759 0.44767
## HABUrbInd 0.1335 0.7638 0.175 0.86121
## HABRoads -10.9163 201.2853 -0.054 0.95675
## HABDecid 1.7443 0.5776 3.020 0.00253 **
## HABOpenWet 0.4220 0.5914 0.714 0.47549
## HABConif 0.9128 0.5792 1.576 0.11504
## HABConifWet 0.2883 0.5790 0.498 0.61852
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 7424.8 on 4568 degrees of freedom
## Residual deviance: 5997.2 on 4560 degrees of freedom
## AIC: 11161
##
## Number of Fisher Scoring iterations: 10
model.sel(mP1, mP2, mP3)
## Model selection table
## (Intrc) Decid DEC HAB family df
## mP1 -1.1640 2.134 poisson(log) 2
## mP3 -1.3860 + poisson(log) 9
## mP2 -0.8577 1.216 poisson(log) 2
## logLik AICc delta weight
## mP1 -5441.550 10887.1 0.00 1
## mP3 -5571.710 11161.5 274.36 0
## mP2 -5620.871 11245.7 358.64 0
## Models ranked by AICc(x)
R2dev(mP1, mP2, mP3)
## R2 R2adj Deviance Dev0 DevR
## mP1 0.227 0.227 1687.873 7424.779 5736.906
## mP2 0.179 0.179 1329.230 7424.779 6095.549
## mP3 0.192 0.191 1427.552 7424.779 5997.226
## df0 dfR p_value
## mP1 4568.000 4567.000 <0.0000000000000002 ***
## mP2 4568.000 4567.000 <0.0000000000000002 ***
## mP3 4568.000 4560.000 <0.0000000000000002 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The prediction in this case would look like: \(log(\lambda_i)=\beta_0 + \sum_{j=1}^{k-1} \beta_j x_{ji}\), where we have \(k\) factor levels (and \(k-1\) indicator variables besides the intercept).
Here is a general way of calculating fitted values or making predictions based on the design matrix (X
) and the coefficients (b
) (column ordering in X
must match the elements in b
) given a parametric log-linear model object
and data frame df
(the code won’t run as is, object
is just a placeholder for your GLM model object):
b <- coef(object)
X <- model.matrix(formula(object), df)
exp(X %*% b)
We can keep adding variables to the model in a forwards-selection fashion. add1
adds variables one at a time, selecting from the scope defined by the formula:
scope <- as.formula(paste("~ FOR + WET + AHF +", paste(cn, collapse="+")))
tmp <- add1(mP1, scope)
tmp$AIC_drop <- tmp$AIC-tmp$AIC[1] # current model
tmp[order(tmp$AIC),]
## Single term additions
##
## Model:
## y ~ Decid
## Df Deviance AIC AIC_drop
## ConifWet 1 5638.4 10791 -96.527
## Conif 1 5685.5 10838 -49.444
## WET 1 5686.8 10839 -48.056
## Water 1 5721.2 10873 -13.748
## FOR 1 5723.9 10876 -10.990
## OpenWet 1 5728.0 10880 -6.885
## Open 1 5730.2 10882 -4.733
## Roads 1 5733.0 10885 -1.893
## AHF 1 5734.3 10886 -0.654
## <none> 5736.9 10887 0.000
## Agr 1 5736.1 10888 1.182
## UrbInd 1 5736.4 10889 1.507
## SoftLin 1 5736.5 10889 1.598
It looks like ConifWet
is the best covariate to add next because it leads to the biggest drop in AIC, and both effects are significant.
mP4 <- glm(y ~ Decid + ConifWet, data=x, family=poisson)
summary(mP4)
##
## Call:
## glm(formula = y ~ Decid + ConifWet, family = poisson, data = x)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2372 -0.9962 -0.6786 0.4473 4.4390
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) -0.70142 0.05563 -12.608
## Decid 1.62240 0.07187 22.574
## ConifWet -0.97845 0.09926 -9.858
## Pr(>|z|)
## (Intercept) <0.0000000000000002 ***
## Decid <0.0000000000000002 ***
## ConifWet <0.0000000000000002 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 7424.8 on 4568 degrees of freedom
## Residual deviance: 5638.4 on 4566 degrees of freedom
## AIC: 10791
##
## Number of Fisher Scoring iterations: 6
The drop1
function is the opposite of add1
, it assesses which term should be dropped from a more saturated model:
formula_all <- y ~ Open + Agr + UrbInd + SoftLin + Roads +
Decid + OpenWet + Conif + ConifWet +
OvernightRain + TSSR + DAY + Longitude + Latitude
tmp <- drop1(glm(formula_all, data=x, family=poisson))
tmp$AIC_drop <- tmp$AIC-tmp$AIC[1] # current model
tmp[order(tmp$AIC),]
## Single term deletions
##
## Model:
## y ~ Open + Agr + UrbInd + SoftLin + Roads + Decid + OpenWet +
## Conif + ConifWet + OvernightRain + TSSR + DAY + Longitude +
## Latitude
## Df Deviance AIC AIC_drop
## OvernightRain 1 5500.0 10674 -1.999
## Roads 1 5500.1 10674 -1.894
## SoftLin 1 5500.4 10675 -1.560
## Agr 1 5500.6 10675 -1.356
## <none> 5500.0 10676 0.000
## Decid 1 5505.0 10679 3.006
## OpenWet 1 5505.1 10679 3.146
## Conif 1 5508.0 10682 6.042
## UrbInd 1 5510.7 10685 8.740
## Longitude 1 5518.5 10693 16.520
## TSSR 1 5523.8 10698 21.822
## ConifWet 1 5528.4 10703 26.431
## DAY 1 5528.6 10703 26.651
## Open 1 5530.7 10705 28.732
## Latitude 1 5580.2 10754 78.186
The step
function can be used to automatically select the best model based on adding/dropping terms:
mPstep <- step(glm(formula_all, data=x, family=poisson),
trace=0) # use trace=1 to see all the steps
summary(mPstep)
##
## Call:
## glm(formula = y ~ Open + UrbInd + Decid + OpenWet + Conif + ConifWet +
## TSSR + DAY + Longitude + Latitude, family = poisson, data = x)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.7634 -0.9859 -0.6739 0.4507 4.6238
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) -5.882931 1.302227 -4.518
## Open -3.474283 0.658674 -5.275
## UrbInd -1.668835 0.542157 -3.078
## Decid 0.833721 0.259569 3.212
## OpenWet -0.740756 0.302380 -2.450
## Conif -0.885584 0.265661 -3.334
## ConifWet -1.894231 0.271697 -6.972
## TSSR -1.234156 0.249837 -4.940
## DAY -2.879703 0.526861 -5.466
## Longitude 0.038307 0.008766 4.370
## Latitude 0.209301 0.023092 9.064
## Pr(>|z|)
## (Intercept) 0.00000625468259 ***
## Open 0.00000013299998 ***
## UrbInd 0.002083 **
## Decid 0.001318 **
## OpenWet 0.014295 *
## Conif 0.000858 ***
## ConifWet 0.00000000000313 ***
## TSSR 0.00000078186410 ***
## DAY 0.00000004608976 ***
## Longitude 0.00001242107713 ***
## Latitude < 0.0000000000000002 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 7424.8 on 4568 degrees of freedom
## Residual deviance: 5501.1 on 4558 degrees of freedom
## AIC: 10669
##
## Number of Fisher Scoring iterations: 6
When we consider interactions between two variables (say \(x_1\) and \(x_2\)), we refer to adding another variable to the model matrix that is a product of the two variables (\(x_{12}=x_1 x_2\)):
head(model.matrix(~x1 * x2, data.frame(x1=1:4, x2=10:7)))
## (Intercept) x1 x2 x1:x2
## 1 1 1 10 10
## 2 1 2 9 18
## 3 1 3 8 24
## 4 1 4 7 28
Let’s consider interaction between our two predictors from before:
mP5 <- glm(y ~ Decid * ConifWet, data=x, family=poisson)
summary(mP5)
##
## Call:
## glm(formula = y ~ Decid * ConifWet, family = poisson, data = x)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.0813 -1.0222 -0.4839 0.3740 4.3213
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) -0.56041 0.05659 -9.902
## Decid 1.21250 0.07818 15.509
## ConifWet -2.31239 0.14901 -15.519
## Decid:ConifWet 5.34611 0.35658 14.993
## Pr(>|z|)
## (Intercept) <0.0000000000000002 ***
## Decid <0.0000000000000002 ***
## ConifWet <0.0000000000000002 ***
## Decid:ConifWet <0.0000000000000002 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 7424.8 on 4568 degrees of freedom
## Residual deviance: 5395.2 on 4565 degrees of freedom
## AIC: 10549
##
## Number of Fisher Scoring iterations: 6
model.sel(mP0, mP1, mP4, mP5)
## Model selection table
## (Int) Dcd CnW CnW:Dcd family df
## mP5 -0.5604 1.213 -2.3120 5.346 poisson(log) 4
## mP4 -0.7014 1.622 -0.9785 poisson(log) 3
## mP1 -1.1640 2.134 poisson(log) 2
## mP0 -0.1243 poisson(log) 1
## logLik AICc delta weight
## mP5 -5270.689 10549.4 0.00 1
## mP4 -5392.287 10790.6 241.19 0
## mP1 -5441.550 10887.1 337.72 0
## mP0 -6285.486 12573.0 2023.59 0
## Models ranked by AICc(x)
The model with the interaction is best supported, but how do we make sense of this relationship? We can’t easily visualize it in a single plot. We can either
visreg::visreg()
doesResourceSelection::mep()
doesvisreg(mP5, scale="response", xvar="ConifWet", by="Decid")
mep(mP5)
Let’s use GAM to fit a bivariate spline:
mGAM2 <- mgcv::gam(y ~ s(Decid, ConifWet), data=x, family=poisson)
plot(mGAM2, scheme=2, rug=FALSE)
Final battle of Poisson models:
model.sel(mP0, mP1, mP12, mP13, mP14, mP2, mP3, mP4, mP5, mGAM, mGAM2)
## Model selection table
## (Int) Dcd Dcd^2 Dcd^3 Dcd^4 DEC HAB
## mGAM2 -0.6242
## mGAM -0.5606
## mP14 -2.6640 16.640 -38.60 41.470 -16.31
## mP13 -2.3910 11.400 -16.31 8.066
## mP12 -1.9240 6.259 -3.97
## mP5 -0.5604 1.213
## mP4 -0.7014 1.622
## mP1 -1.1640 2.134
## mP3 -1.3860 +
## mP2 -0.8577 1.216
## mP0 -0.1243
## CnW CnW:Dcd s(Dcd) s(Dcd,CnW) family
## mGAM2 + poisson(log)
## mGAM + poisson(log)
## mP14 poisson(log)
## mP13 poisson(log)
## mP12 poisson(log)
## mP5 -2.3120 5.346 poisson(log)
## mP4 -0.9785 poisson(log)
## mP1 poisson(log)
## mP3 poisson(log)
## mP2 poisson(log)
## mP0 poisson(log)
## class df logLik AICc delta weight
## mGAM2 gam 27 -5160.178 10375.8 0.00 1
## mGAM gam 9 -5209.172 10437.5 61.73 0
## mP14 glm 5 -5215.401 10440.8 65.05 0
## mP13 glm 4 -5226.456 10460.9 85.15 0
## mP12 glm 3 -5268.767 10543.5 167.77 0
## mP5 glm 4 -5270.689 10549.4 173.62 0
## mP4 glm 3 -5392.287 10790.6 414.81 0
## mP1 glm 2 -5441.550 10887.1 511.33 0
## mP3 glm 9 -5571.710 11161.5 785.69 0
## mP2 glm 2 -5620.871 11245.7 869.98 0
## mP0 glm 1 -6285.486 12573.0 2197.20 0
## Models ranked by AICc(x)
R2dev(mP0, mP1, mP12, mP13, mP14, mP2, mP3, mP4, mP5, mGAM, mGAM2)
## R2 R2adj Deviance Dev0 DevR
## mP0 0.000 0.000 0.000 7424.779 7424.779
## mP1 0.227 0.227 1687.873 7424.779 5736.906
## mP12 0.274 0.274 2033.438 7424.779 5391.341
## mP13 0.285 0.285 2118.060 7424.779 5306.719
## mP14 0.288 0.288 2140.170 7424.779 5284.609
## mP2 0.179 0.179 1329.230 7424.779 6095.549
## mP3 0.192 0.191 1427.552 7424.779 5997.226
## mP4 0.241 0.240 1786.399 7424.779 5638.379
## mP5 0.273 0.273 2029.595 7424.779 5395.184
## mGAM 0.290 0.289 2152.629 7424.779 5272.150
## mGAM2 0.303 0.299 2250.617 7424.779 5174.162
## df0 dfR p_value
## mP0 4568.000 4568.000 < 0.0000000000000002 ***
## mP1 4568.000 4567.000 < 0.0000000000000002 ***
## mP12 4568.000 4566.000 < 0.0000000000000002 ***
## mP13 4568.000 4565.000 0.0000000000000763 ***
## mP14 4568.000 4564.000 0.0000000000003352 ***
## mP2 4568.000 4567.000 < 0.0000000000000002 ***
## mP3 4568.000 4560.000 < 0.0000000000000002 ***
## mP4 4568.000 4566.000 < 0.0000000000000002 ***
## mP5 4568.000 4565.000 < 0.0000000000000002 ***
## mGAM 4568.000 4559.000 0.0000000000005476 ***
## mGAM2 4568.000 4539.000 0.0000000000854279 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Of course, the most complex model wins but the Chi-square test is still significant (indicating lack of fit). Let’s try different error distribution.
We will use the 2-variable model with interaction:
mP <- glm(y ~ Decid * ConifWet, data=x, family=poisson)
Let us try the Negative Binomial distribution first. This distribution is related to Binomial experiments (number of trials required to get a fixed number of successes given a binomial probability). It can also be derived as a mixture of Poisson and Gamma distributions (see Wikipedia), which is a kind of hierarchical model. In this case, the Gamma distribution acts as an i.i.d. random effect for the intercept: \(Y_i\sim Poisson(\lambda_i)\), \(\lambda_i \sim Gamma(e^{\beta_0+\beta_1 x_{1i}}, \gamma)\), where \(\gamma\) is the Gamma variance.
The Negative Binomial variance (using the parametrization common in R functions) is a function of the mean and the scale: \(V(\mu) = \mu + \mu^2/\theta\).
mNB <- glm.nb(y ~ Decid * ConifWet, data=x)
summary(mNB)
##
## Call:
## glm.nb(formula = y ~ Decid * ConifWet, data = x, init.theta = 3.5900635,
## link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.8605 -0.9847 -0.4505 0.3174 3.8030
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) -0.59051 0.06297 -9.378
## Decid 1.24590 0.08919 13.969
## ConifWet -2.35454 0.16045 -14.674
## Decid:ConifWet 5.69452 0.40095 14.203
## Pr(>|z|)
## (Intercept) <0.0000000000000002 ***
## Decid <0.0000000000000002 ***
## ConifWet <0.0000000000000002 ***
## Decid:ConifWet <0.0000000000000002 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(3.5901) family taken to be 1)
##
## Null deviance: 6089.3 on 4568 degrees of freedom
## Residual deviance: 4387.7 on 4565 degrees of freedom
## AIC: 10440
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 3.590
## Std. Err.: 0.425
##
## 2 x log-likelihood: -10430.448
Next, we look at zero-inflated models. In this case, the mixture distribution is a Bernoulli distribution and a count distribution (Poisson or Negative Binomial, for example). The 0’s can come from both the zero and the count distributions, whereas the >0 values can only come from the count distribution: \(A_i \sim Bernoulli(\varphi)\), \(Y_i \sim Poisson(A_i \lambda_i)\).
The zero part of the zero-inflated models are often parametrized as probability of zero (\(1-\varphi\)), as in the pscl::zeroinfl
function:
## Zero-inflated Poisson
mZIP <- zeroinfl(y ~ Decid * ConifWet | 1, x, dist="poisson")
summary(mZIP)
##
## Call:
## zeroinfl(formula = y ~ Decid * ConifWet | 1, data = x,
## dist = "poisson")
##
## Pearson residuals:
## Min 1Q Median 3Q Max
## -1.2182 -0.7003 -0.3390 0.3778 8.9518
##
## Count model coefficients (poisson with log link):
## Estimate Std. Error z value
## (Intercept) -0.32410 0.06513 -4.976
## Decid 1.06993 0.08599 12.443
## ConifWet -2.44111 0.15644 -15.604
## Decid:ConifWet 5.93789 0.38407 15.461
## Pr(>|z|)
## (Intercept) 0.000000648 ***
## Decid < 0.0000000000000002 ***
## ConifWet < 0.0000000000000002 ***
## Decid:ConifWet < 0.0000000000000002 ***
##
## Zero-inflation model coefficients (binomial with logit link):
## Estimate Std. Error z value
## (Intercept) -1.6135 0.1034 -15.6
## Pr(>|z|)
## (Intercept) <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Number of iterations in BFGS optimization: 14
## Log-likelihood: -5206 on 5 Df
## Zero-inflated Negative Binomial
mZINB <- zeroinfl(y ~ Decid * ConifWet | 1, x, dist="negbin")
## Warning in sqrt(diag(vc)[np]): NaNs produced
summary(mZINB)
##
## Call:
## zeroinfl(formula = y ~ Decid * ConifWet | 1, data = x,
## dist = "negbin")
##
## Pearson residuals:
## Min 1Q Median 3Q Max
## -1.2181 -0.7003 -0.3390 0.3778 8.9501
##
## Count model coefficients (negbin with log link):
## Estimate Std. Error z value
## (Intercept) -0.32419 0.06512 -4.978
## Decid 1.07005 0.08599 12.444
## ConifWet -2.44046 0.15642 -15.602
## Decid:ConifWet 5.93657 0.38405 15.458
## Log(theta) 9.72270 NA NA
## Pr(>|z|)
## (Intercept) 0.000000642 ***
## Decid < 0.0000000000000002 ***
## ConifWet < 0.0000000000000002 ***
## Decid:ConifWet < 0.0000000000000002 ***
## Log(theta) NA
##
## Zero-inflation model coefficients (binomial with logit link):
## Estimate Std. Error z value
## (Intercept) -1.6134 0.1034 -15.61
## Pr(>|z|)
## (Intercept) <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Theta = 16692.3363
## Number of iterations in BFGS optimization: 14
## Log-likelihood: -5206 on 6 Df
Now we compare the four different parametric models:
AIC(mP, mNB, mZIP, mZINB)
## df AIC
## mP 4 10549.38
## mNB 5 10440.45
## mZIP 5 10421.96
## mZINB 6 10423.95
Our best model is the Zero-inflated Poisson. The probability of observing a zero as part of the zero distribution is back transformed from the zero coefficient using the inverse logit function:
unname(plogis(coef(mZIP, "zero"))) # P of 0
## [1] 0.1661095
Now we use the scale parameter to visualize the variance functions for the Negative Binomial models (the 1:1 line is the Poisson model):
mNB$theta
## [1] 3.590064
mZINB$theta
## [1] 16692.34
mu <- seq(0, 5, 0.01)
plot(mu, mu + mu^2/mNB$theta, type="l", col=2,
ylab=expression(V(mu)), xlab=expression(mu))
lines(mu, mu + mu^2/mZINB$theta, type="l", col=4)
abline(0,1, lty=2)
legend("topleft", bty="n", lty=1, col=c(2,4),
legend=paste(c("NB", "ZINB"), round(c(mNB$theta, mZINB$theta), 2)))
It is also common practice to consider generalized linear mixed models (GLMMs) for count data. These mixed models are usually considered as Poisson-Lognormal mixtures. The simplest, so called i.i.d., case is similar to the Negative Binomial, but instead of Gamma, we have Lognormal distribution: \(Y_i\sim Poisson(\lambda_i)\), \(log(\lambda_i) = \beta_0+\beta_1 x_{1i}+\epsilon_i\), \(\epsilon_i \sim Normal(0, \sigma^2)\), where \(\sigma^2\) is the Lognormal variance on the log scale.
We can use the lme4::glmer
function: use SiteID
as random effect (we have exactly \(n\) random effects).
mPLN1 <- glmer(y ~ Decid * ConifWet + (1 | SiteID), data=x, family=poisson)
summary(mPLN1)
## Generalized linear mixed model fit by maximum
## likelihood (Laplace Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: y ~ Decid * ConifWet + (1 | SiteID)
## Data: x
##
## AIC BIC logLik deviance df.resid
## 10422.8 10455.0 -5206.4 10412.8 4564
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.1502 -0.6287 -0.2877 0.4178 5.4693
##
## Random effects:
## Groups Name Variance Std.Dev.
## SiteID (Intercept) 0.294 0.5422
## Number of obs: 4569, groups: SiteID, 4569
##
## Fixed effects:
## Estimate Std. Error z value
## (Intercept) -0.75179 0.06748 -11.14
## Decid 1.28467 0.09200 13.96
## ConifWet -2.33801 0.16251 -14.39
## Decid:ConifWet 5.63257 0.41179 13.68
## Pr(>|z|)
## (Intercept) <0.0000000000000002 ***
## Decid <0.0000000000000002 ***
## ConifWet <0.0000000000000002 ***
## Decid:ConifWet <0.0000000000000002 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Decid ConfWt
## Decid -0.895
## ConifWet -0.622 0.644
## Decid:CnfWt 0.176 -0.379 -0.700
Note: the number of unknowns we have to somehow estimate is now more than the number of observations we have. How is that possible?
Alternatively, we can use SurveyArea
as a grouping variable. We have now \(m < n\) random effects, and survey areas can be seen as larger landscapes within which the sites are clustered: \(Y_ij\sim Poisson(\lambda_ij)\), \(log(\lambda_ij) = \beta_0+\beta_1 x_{1ij}+\epsilon_i\), \(\epsilon_i \sim Normal(0, \sigma^2)\). The index \(i\) (\(i=1,...,m\)) defines the cluster (survey area), the \(j\) (\(j=1,...,n_i\)) defines the sites within survey area \(i\) (\(n = \sum_{i=1}^m n_i\)).
mPLN2 <- glmer(y ~ Decid * ConifWet + (1 | SurveyArea), data=x, family=poisson)
summary(mPLN2)
## Generalized linear mixed model fit by maximum
## likelihood (Laplace Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: y ~ Decid * ConifWet + (1 | SurveyArea)
## Data: x
##
## AIC BIC logLik deviance df.resid
## 10021.0 10053.1 -5005.5 10011.0 4564
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7388 -0.6428 -0.3200 0.3550 6.5348
##
## Random effects:
## Groups Name Variance Std.Dev.
## SurveyArea (Intercept) 0.2953 0.5435
## Number of obs: 4569, groups: SurveyArea, 271
##
## Fixed effects:
## Estimate Std. Error z value
## (Intercept) -0.74587 0.07828 -9.528
## Decid 1.19670 0.09841 12.160
## ConifWet -2.32133 0.16863 -13.766
## Decid:ConifWet 5.53462 0.39771 13.916
## Pr(>|z|)
## (Intercept) <0.0000000000000002 ***
## Decid <0.0000000000000002 ***
## ConifWet <0.0000000000000002 ***
## Decid:ConifWet <0.0000000000000002 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Decid ConfWt
## Decid -0.808
## ConifWet -0.610 0.628
## Decid:CnfWt 0.162 -0.325 -0.670
In the battle of distributions (keeping the linear predictor part the same) the clustered GLMM was best supported:
tmp <- AIC(mP, mNB, mZIP, mZINB, mPLN1, mPLN2)
tmp$delta_AIC <- tmp$AIC - min(tmp$AIC)
tmp[order(tmp$AIC),]
## df AIC delta_AIC
## mPLN2 5 10020.97 0.0000
## mZIP 5 10421.96 400.9852
## mPLN1 5 10422.82 401.8529
## mZINB 6 10423.95 402.9764
## mNB 5 10440.45 419.4770
## mP 4 10549.38 528.4065
Let’s change gears a bit now, and steer closer to the main focus of this workshop. We want to account for methodological differences among samples. One aspect of methodologies involve variation in total counting duration. We’ll now inspect what that does to our observations.
First, we create a list of matrices where counts are tabulated by surveys and time intervals for each species:
ydur <- Xtab(~ SiteID + Dur + SpeciesID ,
josm$counts[josm$counts$DetectType1 != "V",])
The ydur
object is a list with identical matrices, one for each species. We use the same species (spp
) as before
y <- as.matrix(ydur[[spp]])
head(y)
## 0-3min 3-5min 5-10min
## CL10102 3 0 0
## CL10106 0 0 0
## CL10108 0 0 0
## CL10109 2 0 1
## CL10111 2 0 0
## CL10112 2 0 0
colMeans(y) # mean count of new individuals
## 0-3min 3-5min 5-10min
## 0.6736704 0.0934559 0.1159991
Create a data frame including the cumulative counts in the 0-3, 0-5, and 0-10 minutes time intervals
cumsum(colMeans(y)) # cumulative counts
## 0-3min 3-5min 5-10min
## 0.6736704 0.7671263 0.8831254
x <- data.frame(
josm$surveys,
y3=y[,"0-3min"],
y5=y[,"0-3min"]+y[,"3-5min"],
y10=rowSums(y))
(tb3 <- table(x$y3))
##
## 0 1 2 3 4 5 6
## 2768 922 576 226 61 14 2
(tb5 <- table(x$y5))
##
## 0 1 2 3 4 5 6
## 2643 894 632 285 87 24 4
(tb10 <- table(x$y10))
##
## 0 1 2 3 4 5 6
## 2493 883 656 363 132 29 13
plot(names(tb3), as.numeric(tb3)/sum(tb3), type="l",
xlab="Count", ylab="Proportion")
lines(names(tb5), as.numeric(tb5)/sum(tb5), type="l", col=2)
lines(names(tb10), as.numeric(tb10)/sum(tb10), type="l", col=4)
abline(v=mean(x$y3), lty=2)
abline(v=mean(x$y5), lty=2, col=2)
abline(v=mean(x$y10), lty=2, col=4)
legend("topright", bty="n", lty=1, col=c(1,2,4),
legend=paste0("0-", c(3, 5, 10), " min"))
If we fit single-predictor GLMs to these 3 responses, we get different fitted values, consistent with our mean counts:
m3 <- glm(y3 ~ Decid, data=x, family=poisson)
m5 <- glm(y5 ~ Decid, data=x, family=poisson)
m10 <- glm(y10 ~ Decid, data=x, family=poisson)
mean(fitted(m3))
## [1] 0.6736704
mean(fitted(m5))
## [1] 0.7671263
mean(fitted(m10))
## [1] 0.8831254
Using the multiple time interval data, we can pretend that we have a mix of methodologies with respect to count duration:
set.seed(1)
x$meth <- as.factor(sample(c("A", "B", "C"), nrow(x), replace=TRUE))
x$y <- x$y3
x$y[x$meth == "B"] <- x$y5[x$meth == "B"]
x$y[x$meth == "C"] <- x$y10[x$meth == "C"]
We can estimate the effect of the methodology:
mm <- glm(y ~ meth - 1, data=x, family=poisson)
summary(mm)
##
## Call:
## glm(formula = y ~ meth - 1, family = poisson, data = x)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.3119 -1.2733 -1.1472 0.3913 3.9799
##
## Coefficients:
## Estimate Std. Error z value
## methA -0.41855 0.03143 -13.315
## methB -0.20998 0.02824 -7.436
## methC -0.15023 0.02798 -5.368
## Pr(>|z|)
## methA < 0.0000000000000002 ***
## methB 0.000000000000104 ***
## methC 0.000000079437024 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 7233.2 on 4569 degrees of freedom
## Residual deviance: 6938.6 on 4566 degrees of freedom
## AIC: 11646
##
## Number of Fisher Scoring iterations: 6
boxplot(fitted(mm) ~ meth, x)
exp(coef(mm))
## methA methB methC
## 0.6579974 0.8106012 0.8605121
Or the effect of the continuous predictor and the method (discrete):
mm <- glm(y ~ Decid + meth, data=x, family=poisson)
summary(mm)
##
## Call:
## glm(formula = y ~ Decid + meth, family = poisson, data = x)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2788 -0.9529 -0.7402 0.4472 4.5675
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) -1.46163 0.04596 -31.804
## Decid 2.14500 0.05734 37.407
## methB 0.16685 0.04227 3.948
## methC 0.30269 0.04209 7.191
## Pr(>|z|)
## (Intercept) < 0.0000000000000002 ***
## Decid < 0.0000000000000002 ***
## methB 0.000078964144157 ***
## methC 0.000000000000643 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 6983.3 on 4568 degrees of freedom
## Residual deviance: 5443.8 on 4565 degrees of freedom
## AIC: 10153
##
## Number of Fisher Scoring iterations: 6
boxplot(fitted(mm) ~ meth, x)
exp(coef(mm))
## (Intercept) Decid methB methC
## 0.2318576 8.5420610 1.1815789 1.3534989
The fixed effects adjust the means quite well:
cumsum(colMeans(y))
## 0-3min 3-5min 5-10min
## 0.6736704 0.7671263 0.8831254
mean(y[,1]) * c(1, exp(coef(mm))[3:4])
## methB methC
## 0.6736704 0.7959947 0.9118121
But it is all relative, depends on reference methodology/protocol and the data. As the time increases, it is not guaranteed that the estimates will increase as well – there can be all kinds off biases and sampling variation that would work against us.
The other problem is, we can’t easily extrapolate to a methodology with count duration of 12 minutes, or interpolate to a methodology with count duration of 2 or 8 minutes. We somehow need to express time expediture in minutes to make that work. Let’s try something else:
x$tmax <- c(3, 5, 10)[as.integer(x$meth)]
mm <- glm(y ~ Decid + I(log(tmax)), data=x, family=poisson)
summary(mm)
##
## Call:
## glm(formula = y ~ Decid + I(log(tmax)), family = poisson, data = x)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2912 -0.9529 -0.7308 0.4482 4.5476
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) -1.71574 0.07044 -24.359
## Decid 2.14726 0.05730 37.472
## I(log(tmax)) 0.24559 0.03431 7.158
## Pr(>|z|)
## (Intercept) < 0.0000000000000002 ***
## Decid < 0.0000000000000002 ***
## I(log(tmax)) 0.000000000000818 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 6983.3 on 4568 degrees of freedom
## Residual deviance: 5444.9 on 4566 degrees of freedom
## AIC: 10152
##
## Number of Fisher Scoring iterations: 6
tmax <- seq(0, 20, 0.01)
plot(tmax, exp(log(tmax) * coef(mm)[3]), type="l",
ylab="Method effect", col=2)
Now we are getting somewhere. But still, couple of questions come to mind:
Before solving the count duration issue, let us look at the effect of survey area. We get a similar count breakdown, but now by distance band:
ydis <- Xtab(~ SiteID + Dis + SpeciesID ,
josm$counts[josm$counts$DetectType1 != "V",])
y <- as.matrix(ydis[[spp]])
head(y)
## 0-50m 50-100m 100+m
## CL10102 1 2 0
## CL10106 0 0 0
## CL10108 0 0 0
## CL10109 1 2 0
## CL10111 1 0 1
## CL10112 0 2 0
colMeans(y) # mean count of new individuals
## 0-50m 50-100m 100+m
## 0.29240534 0.49223025 0.09848982
cumsum(colMeans(y)) # cumulative counts
## 0-50m 50-100m 100+m
## 0.2924053 0.7846356 0.8831254
x <- data.frame(
josm$surveys,
y50=y[,"0-50m"],
y100=y[,"0-50m"]+y[,"50-100m"])
We don’t consider the unlimited distance case, because the survey area there is unknown (we will address this problem later).
(tb50 <- table(x$y50))
##
## 0 1 2 3 4 5
## 3521 792 228 25 2 1
(tb100 <- table(x$y100))
##
## 0 1 2 3 4 5 6
## 2654 833 647 316 92 20 7
plot(names(tb50), as.numeric(tb50)/sum(tb50), type="l",
xlab="Count", ylab="Proportion")
lines(names(tb100), as.numeric(tb100)/sum(tb100), type="l", col=2)
abline(v=mean(x$y50), lty=2)
abline(v=mean(x$y100), lty=2, col=2)
legend("topright", bty="n", lty=1, col=c(1,2),
legend=paste0("0-", c(50, 100), " m"))
We compare the counts within the 0-50 and 0-100 m circles:
m50 <- glm(y50 ~ Decid, data=x, family=poisson)
m100 <- glm(y100 ~ Decid, data=x, family=poisson)
mean(fitted(m50))
## [1] 0.2924053
mean(fitted(m100))
## [1] 0.7846356
coef(m50)
## (Intercept) Decid
## -2.265081 2.126118
coef(m100)
## (Intercept) Decid
## -1.326642 2.208799
Offsets are constant terms in the linear predictor, e.g. \(log(\lambda_i) = \beta_0 + \beta_1 x_{1i} + o_i\), where \(o_i\) is an offset.
In the survey area case, an offset might be the log of area surveyed. Abundance (\(N\)) is population density (\(D\)) multiplied by survey area (\(A\)). The logic for this is based on point processes: intensity is a linear function of area under a homogeneous Poisson point process. So we can say thet \(E[Y_i] = N_i = D_i A_i\), thus \(log(N_i) = log(D_i) + log(A_i)\) where \(o_i = log(A_i)\) is the offset.
Let’s see if using area as offset makes our models comparable. Instead of mixing up different survey types, let’s see if we can make them identical. We use distance in meters divided by 100, so the population density is estimated in ha.
m50 <- glm(y50 ~ Decid, data=x, family=poisson,
offset=rep(log(0.5^2*pi), nrow(x)))
m100 <- glm(y100 ~ Decid, data=x, family=poisson,
offset=rep(log(1^2*pi), nrow(x)))
coef(m50)
## (Intercept) Decid
## -2.023517 2.126118
coef(m100)
## (Intercept) Decid
## -2.471372 2.208799
mean(exp(model.matrix(m50) %*% coef(m50)))
## [1] 0.372302
mean(exp(model.matrix(m100) %*% coef(m100)))
## [1] 0.2497573
These coefficients and mean predictions are much closer to each other, but something else is going on.
We pretend again, that survey area varies in our data set:
set.seed(1)
x$meth <- as.factor(sample(c("A", "B"), nrow(x), replace=TRUE))
x$y <- x$y50
x$y[x$meth == "B"] <- x$y100[x$meth == "B"]
Methodology effect:
mm <- glm(y ~ meth - 1, data=x, family=poisson)
summary(mm)
##
## Call:
## glm(formula = y ~ meth - 1, family = poisson, data = x)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.2612 -1.2612 -0.7591 0.2206 3.7202
##
## Coefficients:
## Estimate Std. Error z value
## methA -1.24440 0.03916 -31.775
## methB -0.22902 0.02335 -9.808
## Pr(>|z|)
## methA <0.0000000000000002 ***
## methB <0.0000000000000002 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 7387.0 on 4569 degrees of freedom
## Residual deviance: 5683.8 on 4567 degrees of freedom
## AIC: 9170.7
##
## Number of Fisher Scoring iterations: 6
exp(coef(mm))
## methA methB
## 0.2881131 0.7953166
Predictor and method effects:
mm <- glm(y ~ Decid + meth, data=x, family=poisson)
summary(mm)
##
## Call:
## glm(formula = y ~ Decid + meth, family = poisson, data = x)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2091 -0.8554 -0.5895 0.2436 3.5774
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) -2.32753 0.05673 -41.03
## Decid 2.19611 0.06893 31.86
## methB 1.02835 0.04560 22.55
## Pr(>|z|)
## (Intercept) <0.0000000000000002 ***
## Decid <0.0000000000000002 ***
## methB <0.0000000000000002 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 6247.1 on 4568 degrees of freedom
## Residual deviance: 4595.6 on 4566 degrees of freedom
## AIC: 8084.5
##
## Number of Fisher Scoring iterations: 6
boxplot(fitted(mm) ~ meth, x)
exp(coef(mm))
## (Intercept) Decid methB
## 0.09753656 8.98995621 2.79645721
cumsum(colMeans(y))[1:2]
## 0-50m 50-100m
## 0.2924053 0.7846356
mean(y[,1]) * c(1, exp(coef(mm))[3])
## methB
## 0.2924053 0.8176990
Use log area as continuous predictor: we would expect a close to 1:1 relationship on the abundance scale.
x$logA <- log(ifelse(x$meth == "A", 0.5, 1)^2*pi)
mm <- glm(y ~ Decid + logA, data=x, family=poisson)
summary(mm)
##
## Call:
## glm(formula = y ~ Decid + logA, family = poisson, data = x)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2091 -0.8554 -0.5895 0.2436 3.5774
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) -2.14834 0.05232 -41.06
## Decid 2.19611 0.06893 31.86
## logA 0.74180 0.03289 22.55
## Pr(>|z|)
## (Intercept) <0.0000000000000002 ***
## Decid <0.0000000000000002 ***
## logA <0.0000000000000002 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 6247.1 on 4568 degrees of freedom
## Residual deviance: 4595.6 on 4566 degrees of freedom
## AIC: 8084.5
##
## Number of Fisher Scoring iterations: 6
A <- seq(0, 2, 0.01) # in ha
plot(A, exp(log(A) * coef(mm)[3]), type="l",
ylab="Method effect", col=2)
abline(0, 1, lty=2)
The offset forces the relationship to be 1:1 (it is like fixing the logA
coefficient to be 1):
mm <- glm(y ~ Decid, data=x, family=poisson, offset=x$logA)
summary(mm)
##
## Call:
## glm(formula = y ~ Decid, family = poisson, data = x, offset = x$logA)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.3051 -0.8416 -0.5245 0.2338 3.6000
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) -2.36583 0.04530 -52.23
## Decid 2.20312 0.06901 31.93
## Pr(>|z|)
## (Intercept) <0.0000000000000002 ***
## Decid <0.0000000000000002 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 5746.0 on 4568 degrees of freedom
## Residual deviance: 4653.6 on 4567 degrees of freedom
## AIC: 8140.5
##
## Number of Fisher Scoring iterations: 6
boxplot(fitted(mm) ~ meth, x)
cumsum(colMeans(y))[1:2]
## 0-50m 50-100m
## 0.2924053 0.7846356
c(0.5, 1)^2*pi * mean(exp(model.matrix(mm) %*% coef(mm))) # /ha
## [1] 0.2172632 0.8690527
Predictions using offsets in glm
can be tricky, because the offset is usually included in the calculation of the expected value.
mm1 <- glm(y ~ Decid, data=x, family=poisson, offset=x$logA)
mm2 <- glm(y ~ Decid + offset(logA), data=x, family=poisson)
mean(fitted(mm1))
## [1] 0.5441016
mean(fitted(mm2))
## [1] 0.5441016
mean(predict(mm1, type="response"))
## [1] 0.5441016
mean(predict(mm2, type="response"))
## [1] 0.5441016
mean(exp(model.matrix(mm1) %*% coef(mm1))*exp(x$logA))
## [1] 0.5441016
mean(exp(model.matrix(mm2) %*% coef(mm2))*exp(x$logA))
## [1] 0.5441016
When estimating population density, we often want results to refer to a unit area (\(A=1\)) that leads to 0 offset (\(log(1)=0\)), thus we need to make sure it is the case
mean(exp(model.matrix(mm1) %*% coef(mm1)))
## [1] 0.2766281
mean(exp(model.matrix(mm2) %*% coef(mm2)))
## [1] 0.2766281
The safest way is to use the matrix product (exp(model.matrix(mm) %*% coef(mm) + <offset>)
). We can often omit the offset, e.g. in the log area case we can express the prediction per unit area. If the unit is 1 ha, as in our case, log(1)=0, which means the mean abundance per unit area can be calculated by omitting the offsets all together.
logA
coefficient that was less than 1 when we should have gotten 1. Why?It looks like that our \(E[Y]=N=DA\) does not hold.
The best that we can do today is to say thet \(E[Y]=DAC\) where \(C\) is a correction factor whose value is unknown. Note that \(N\) is still our interest, but instead of \(E[Y]=N\) we observe a count that is \(E[Y] < N\).
The value of \(C\) must relate to the time and distance components of the surveys. If that’s the case, we can just call the time related part of \(C\) as \(p\) and the distance related part of \(C\) as \(q\) (\(C=pq\)). If somehow we can estimate \(p\) and \(q\), we can estimate \(N\) because \(N=DA = E[Y] / pq\).
The basic equation that we will rely on is \(E[Y]=DApq=qpAD\), which reads QPAD. If you did not know, now you know why this approach is often referred to as the QPAD approach.
On the next days you will learn how to estimate \(p\) from removal sampling and \(q\) (and sometimes also \(A\)) from distance sampling. Once we have a handle on \(Apq\), we can estimate \(D\) and \(N\).
Ultimately, you will learn how to estimate population size.
Think about why knowing the absolute population size matters. Why shouldn’t we just stop at good old GLM and relative abundance?