
Multiple-visit occupancy and N-mixture models
Point count data analysis workshop 2025

Péter Sólymos

2025-11-12

Table of contents

Preamble 1

Introduction to simulations 2

Simulating occupancy data 5

Simulating multiple visits 7

Fitting occupancy models 10
Maximum likelihood estimator . 11

Simulating count data 15

Observation error for counts 16

Count data with multiple visits 17

Fitting N-mixture models 19
N-mixture likelihood . 20

Next 24

Preamble

1

suppressPackageStartupMessages({
library(dplyr)
library(ggplot2)
library(unmarked)

})
set.seed(1234)

Introduction to simulations

The goal is to implement

• a data generating mechanisms
• using random numbers

Here is the most basic simulation: the coin flip.

We assume that the coin is fair, therefore:

• the probability of getting head (𝑦 = 1) is 𝑝 = 0.5
• the probability of getting tail (𝑦 = 0) is 1 − 𝑝 = 0.5

Here is code for setting the probability value 𝑝 and getting the outcome 𝑦 using Uniform
random numbers:

1. We generate a random number (u) between 0 and 1
2. The outcome is 1 if the number is < 𝑝
3. The outcome is 0 if the random number of ≥ 𝑝

p <- 0.5

u <- runif(n = 1, min = 0, max = 1)
u

[1] 0.1137034

y <- ifelse(u < p, 1, 0)
y

[1] 1

2

Reproducibility with random numbers

Every time you run the code above, you’ll get a different value for u and possibly
a different outcome. To make this reproducible, we can set the random seed with
e.g. set.seed(123).

The runif() function takes 3 arguments:

• n is the number of trials, i.e. number of coin flips
• min and max define the range, here we used the unit range 0 − 1

Here is the histogram of a 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1) random variable:

u <- runif(n = 100, min = 0, max = 1)
summary(u)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.009496 0.199980 0.386883 0.436715 0.666687 0.992150

hist(u)

Histogram of u

u

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
4

8
12

We use the random numbers to repeat the coin flip experiment 100 times and tabulate the
results:

3

ifelse(u < p, 1, 0) |>
table(y = _) |>
as.data.frame() |>
mutate(Prop = Freq / sum(Freq))

y Freq Prop
1 0 45 0.45
2 1 55 0.55

We will see uses of the Uniform distribution later.

Another way to run the coin flip experiment in R is to use the Bernoulli distribution.

y <- rbinom(n = 100, size = 1, prob = p)
summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 0.00 1.00 0.53 1.00 1.00

table(y = y) |>
as.data.frame() |>
mutate(Prop = Freq / sum(Freq))

y Freq Prop
1 0 47 0.47
2 1 53 0.53

The rbinom() function takes 3 arguments:

• n is the number of observations
• size is the number of trials
• prob is the probability of the outcome to be 1

The rbinom name refers to the Binomial distribution, which is multiple independent Bernoulli
trials. This is what the size argument refers to, i.e. size = 1 means Bernoulli.

4

Simulating occupancy data

Let’s see how we can use the Bernoulli distribution and the rbinom function to simulate
occupancy data.

Let us sample 𝑛 = 50 locations and observe the occupancy status of Ovenbirds at each of the
locations:

• The true occupancy status at the 𝑖th location is 𝑊𝑖.
• The probability of occupancy is 𝑃(𝑊𝑖 = 1) = 𝜙.

The true occupancy probability $�is denoted withphi.true‘:

n <- 50
phi.true <- 0.4

W <- rbinom(n = n, size = 1, prob = phi.true)

table(W = W)

W
0 1
32 18

There are many reasons why we might not observe the true occupancy status 𝑊 . When the
data that we collect (𝑌) is not the true occupancy status 𝑊 , we say that there is detection
error. It can manifest the following way:

We can capture detection error also as a probability 𝑝 which is the probability of detecting the
species when present (𝑊𝑖 = 1).

• If the species is absent (𝑊𝑖 = 0), we will always observe 0, thus 𝑌𝑖 = 0: 𝑃(𝑌𝑖 = 0|𝑊𝑖 =
0) = 1.

• If 𝑊𝑖 = 1, we might observe 0 (missed all the birds) or 1:

– species detected when present, 𝑃(𝑌𝑖 = 1|𝑊𝑖 = 1) = 𝑝
– species not detected when present, 𝑃(𝑌𝑖 = 0|𝑊𝑖 = 1) = 1 − 𝑝

Let’s simulate what we observe, the Y vector. We use the rbinom() function with n = n as
before, but the size argument is not a fixed 1, but the true status W. When W is 0, the function
will always return 0, when W is 1, the function will reyrun 1 or 0 according the the detection
probability 𝑝, denoted as p.true:

5

p.true <- 0.6
Y <- rbinom(n = n, size = W, prob = p.true)

table(W = W, Y = Y)

Y
W 0 1
0 32 0
1 2 16

The cross-tabulation show how many times we observed 1’s vs 0’s when the true status was
1.

Using the observations as if those would represent the true status is called the naive approach.
The naive approach assume that there is no observation error:

mean(Y)

[1] 0.32

But we see that the mean of Y is quite far from phi.true.

Fitting a logistic regression (aka Binomial GLM) to the data yields the same result:

m1 <- glm(Y ~ 1, family = binomial)
coef(m1)

(Intercept)
-0.7537718

plogis(coef(m1))

(Intercept)
0.32

The coefficient for the intercept is the maximum likelihood estimate on the logit scale. To
transform that to the 0−1 probability scale, we can use the plogis() function that implements
the inverse logistic transformation.

The unobserved W variable is often called a latent variable. It is latent in the sense that it
cannot be directly observed. We need to find ways to:

6

• use survey design to minimize the detection error, or
• use statistical models to correct for detection error, or
• the combination of the 2.

Simulating multiple visits

A feature of multiple-visit methods is that we visit the same site 𝑇 times. Each visit (𝑡 =
1, … , 𝑇) gives us a different observation, 𝑌𝑖𝑡.

Key assumptions are the following:

• the visits are independent of each other
• the true status 𝑊 stays the same over the visits (𝑊𝑖 = 𝑊𝑖𝑡)

We can generalize the simulation code to any number of T visits as:

T <- 5
Y <- matrix(NA, n, T)
for (t in 1:T) {

Y[, t] <- rbinom(n = n, size = W, prob = p.true)
}

A more concise way of writing the above code without a loop is:

Y <- replicate(T, rbinom(n = n, size = W, prob = p.true))

If we inspect any row (site) from the Y matrix, we see a series of 1’s and 0’s for sites where the
species is present. This is called the detection history.

data.frame(
W = head(W[W > 0]),
Visit = head(Y[W > 0,])

)

W Visit.1 Visit.2 Visit.3 Visit.4 Visit.5
1 1 0 1 1 1 1
2 1 1 0 1 1 1
3 1 0 0 0 1 0
4 1 1 0 1 1 1
5 1 0 1 0 1 1
6 1 1 0 0 0 1

7

The detection history is all 0’s for sites where the species is absent:

data.frame(
W = head(W[W == 0]),
Visit = head(Y[W == 0,])

)

W Visit.1 Visit.2 Visit.3 Visit.4 Visit.5
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0

We can compare the maximum of the observed values over the visits at each site:

Y_max <- apply(Y, 1, max)
table(W = W, Y_max = Y_max)

Y_max
W 0 1
0 32 0
1 0 18

Fit the logistic regression model to Y_max:

m2 <- glm(Y_max ~ 1, family = binomial)
coef(m2)

(Intercept)
-0.5753641

plogis(coef(m2))

(Intercept)
0.36

8

What happens when we increase the number of visits?

Change the value of T and compare the Y_max to W. What happens to our naive estimator
of using Y_max?

The maximum over a large number of visits will approach the latent variable W:

n2 <- 500
W2 <- rbinom(n = n2, size = 1, prob = phi.true)
Tvals <- 1:10

data.frame(
T = Tvals,
Y_max = sapply(Tvals, \(T) {

mean(apply(
replicate(T, rbinom(n = n2, size = W, prob = p.true)),
1, max

))
})

) |> ggplot(aes(x = T, y = Y_max)) +
geom_hline(yintercept = phi.true, lty = 2, col = 2) +
geom_hline(yintercept = mean(W), lty = 2, col = 4) +
geom_line() +
ylim(0, 1) +
scale_x_continuous(breaks = Tvals) +
theme_light()

9

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10
T

Y
_m

ax

Fitting occupancy models

The unmarked package implements the multiple-visit occupancy model.

References

MacKenzie et al., 2002. Estimating site occupancy rates when detection proba-
bilities are less than one. Ecology, 83:2248–2255. Fulltext, DOI 10.1890/0012-
9658(2002)083[2248:ESORWD]2.0.CO;2

• Organize the data and an unmarked occupancy data frame
• Fit the model with the occu
• the ~1 ~1 formula says that we do not have covariates, just the intercepts

umf <- unmarked::unmarkedFrameOccu(y = Y)
summary(umf)

unmarkedFrame Object

50 sites
Maximum number of observations per site: 5
Mean number of observations per site: 5

10

https://www.sfu.ca/~lmgonigl/materials-qm/papers/mackenzie-2002-2248.pdf

Sites with at least one detection: 18

Tabulation of y observations:
0 1

198 52

m3 <- unmarked::occu(~1 ~ 1, umf)
m3

Call:
unmarked::occu(formula = ~1 ~ 1, data = umf)

Occupancy:
Estimate SE z P(>|z|)
-0.552 0.298 -1.86 0.0636

Detection:
Estimate SE z P(>|z|)

0.279 0.223 1.25 0.211

AIC: 191.4105

We use the plogis() function again to transform the estimates to the probability scale and
compare with our phi.true and p.true values:

plogis(coef(m3, type = "det"))

p(Int)
0.5692042

plogis(coef(m3, type = "state"))

psi(Int)
0.3654202

Maximum likelihood estimator

The glm() and occu() functions use maximum likelihood to find the parameter estimates
for a given data set. In other words, we coefficients (maximum likelihood estimate, or MLE)

11

maximize the likelihood function for the data set in question. The likelihood function can be
relatively simple and easy to calculate, or it can be computationally challenging to compute
(e.g. for hierarchical or mixed models).

The likelihood function 𝐿 for the simple occupancy model with parameters 𝑝 and 𝜙 for multiple
visits data can be written as:

𝐿(𝑝, 𝜙; 𝑦1,1, … , 𝑦𝑛,𝑇) =
𝑛

∏
𝑖=1

[𝜙 ((𝑇
𝑦𝑖⋅

)𝑝𝑦𝑖⋅(1 − 𝑝)𝑇 −𝑦𝑖⋅) + (1 − 𝜙)𝐼(𝑦𝑖⋅ = 0)]

where 𝑦𝑖⋅ = ∑𝑡=1
𝑇 𝑦𝑖,𝑡 and 𝐼(𝑦𝑖⋅ = 0) is an indicator function that is equal to 1 if 𝑦𝑖⋅ = 0.

Here is the R code to calculate the log likelihood for the occupancy model:

L_fun_occu <- function(Y, p, phi) {
ydot <- rowSums(Y)
T <- ncol(Y)
L <- prod(

phi *
(choose(T, ydot) * p^ydot * (1 - p)^(T - ydot)) +
(1 - phi) * (ydot == 0)

)
L

}

Next, we evaluate the likelihood function at different values of p and phi while keeping the
data Y constant. We set up the grid for this using expand.grid():

g <- 100
grid <- expand.grid(

p = seq(0, 1, length.out = g),
phi = seq(0, 1, length.out = g),
L = NA

)

for (i in 1:nrow(grid)) {
grid$L[i] <- L_fun_occu(

Y = Y,
p = grid$p[i],
phi = grid$phi[i]

)
}

12

When we plot the likelihood surface, we see the maximum, the lines indicate the true proba-
bility values:

image(
list(

x = unique(grid$p),
y = unique(grid$phi),
z = matrix(grid$L, g, g)

),
xlab = "p",
ylab = expression(varphi)

)
abline(h = phi.true, v = p.true, col = 1, lwd = 1)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

p

ϕ

grid |> ggplot(aes(x = p, y = phi, z = L)) +
geom_contour_filled(show.legend = FALSE) +
geom_hline(yintercept = phi.true) +
geom_vline(xintercept = p.true) +
xlab("p") +
ylab(expression(phi)) +
theme_light()

13

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
p

φ

grid[which.max(grid$L),]

p phi L
3657 0.5656566 0.3636364 3.925967e-26

If the rgl package is installed, we can view the surface in 3D:

if (interactive()) {
library(rgl)

L_mat <- matrix(grid$L, g, g)
dcpal_grbu <- colorRampPalette(c("#18bc9c", "#3498db"))
Col <- rev(dcpal_grbu(12))[cut(L_mat, breaks = 12)]

open3d()
persp3d(

x = unique(grid$p),
y = unique(grid$phi),
z = L_mat / max(L_mat),
col = Col,
theta = 50, phi = 25, expand = 0.75, ticktype = "detailed",
xlab = "p", ylab = expression(phi), zlab = "L"

14

)
quads3d(

x = rep(p.true, 4),
y = c(0, 0, 1, 1),
z = c(0, 1, 1, 0),
alpha = 0.5, col = 2

)
quads3d(

x = c(0, 0, 1, 1),
y = rep(phi.true, 4),
z = c(0, 1, 1, 0),
alpha = 0.5, col = 4

)
}

Note

We will circle back to these plots later, feel free to explore it with different settings of 𝑛,
𝑇 , 𝑝, and 𝜙.

Simulating count data

Simulating counts is similar to occupancy. We need a count distribution. The most basic
count distribution is Poisson which has 1 parameter, 𝜆, which is the mean. The variance also
happens to equal the mean. Use the rpois() function in R to generate random numbers from
the poisson distribution. Here, 𝑁𝑖 (𝑖 = 1, … , 𝑛) is the abundance (number of individuals) at
the 𝑖th location.

lambda.true <- 4.2
N <- rpois(n = n, lambda = lambda.true)

table(N)

N
2 3 4 5 6 7 9
8 11 9 6 8 6 2

summary(N)

15

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.00 3.00 4.00 4.46 6.00 9.00

table(N) |> plot(ylab = "Frequency")
0

2
4

6
8

10

N

F
re

qu
en

cy

2 3 4 5 6 7 9

Observation error for counts

Here is how we introduce observation error to count data:

• select a location,
• take the count 𝑁𝑖,
• for each individual (1, 2, … , 𝑁𝑖), use the Bernoulli distribution with probability 𝑝 to

determine if the individual was detected (1) or not (0)

The number of individuals detected (𝑌𝑖) is less than or equal to 𝑁𝑖: 𝑌𝑖 ≤ 𝑁𝑖. For example, if
𝑁𝑖 = 4, 𝑌𝑖 can be 0, 1, 2, 3, or 4.

To express things mon concisely, we can also use a Binomial distribution with 𝑁𝑖 as the number
of trials and probability 𝑝:

Y <- rbinom(n = n, size = N, prob = p.true)

print(table(N = N, Y = Y), zero.print = ".")

Y
N 0 1 2 3 4 5 6
2 . 4 4

16

3 . 4 4 3 . . .
4 1 1 1 5 1 . .
5 . . 1 2 1 2 .
6 . . 1 2 3 1 1
7 . . . 1 2 1 2
9 1 1

Count data with multiple visits

When visiting each site 𝑇 times, the observed data will be organized in a 𝑛 by 𝑇 matrix as
how we saw it for occupancy:

Y <- matrix(NA, n, T)
for (t in 1:T) {

Y[, t] <- rbinom(n = n, size = N, prob = p.true)
}

alternatively
Y <- replicate(T, rbinom(n = n, size = N, prob = p.true))

Multiple-visit count model have similar assumptions as occupancy models, most importantly
that 𝑁𝑖𝑡 = 𝑁𝑖. This condition is also referred to as the closed population assumption, i.e. there
is no immigration, emigration, birth, or death between visits.

data.frame(N = N, Visit = Y) |> head()

N Visit.1 Visit.2 Visit.3 Visit.4 Visit.5
1 6 5 1 4 5 3
2 6 5 4 5 3 4
3 4 3 2 2 2 3
4 7 4 3 4 5 4
5 6 3 3 4 5 4
6 2 2 0 1 1 2

As we saw before, we can use the Y_max to fit the naive count model, but instead of the
plogis() function, we use log() as the inverse of the logarithmic link used for Poisson GLM:

Y_max <- apply(Y, 1, max)
m4 <- glm(Y_max ~ 1, family = poisson)
coef(m4)

17

(Intercept)
1.329724

exp(coef(m4))

(Intercept)
3.78

With enough visits, tha Y_max will approach the latent variable N:

N2 <- rpois(n = n2, lambda = lambda.true)
Tvals <- c(1, 2, 4, 8, 10, 15, 20, 30, 40, 50)

data.frame(
T = Tvals,
Y_max = sapply(Tvals, \(T) {

mean(apply(
replicate(T, rbinom(n = n, size = N, prob = p.true)),
1, max

))
})

) |> ggplot(aes(x = T, y = Y_max)) +
geom_hline(yintercept = lambda.true, lty = 2, col = 2) +
geom_hline(yintercept = mean(N), lty = 2, col = 4) +
geom_line() +
ylim(0, NA) +
scale_x_continuous(breaks = Tvals) +
theme_light()

18

0

1

2

3

4

1 2 4 8 10 15 20 30 40 50
T

Y
_m

ax

Fitting N-mixture models

Fit the multiple-visit count model, the so called N-mixture model, using the pcount() function
of the unmarked R package.

The unmarked::unmarkedFramePCount() function is used to organize the count data:

umf <- unmarked::unmarkedFramePCount(y = Y)
summary(umf)

unmarkedFrame Object

50 sites
Maximum number of observations per site: 5
Mean number of observations per site: 5
Sites with at least one detection: 50

Tabulation of y observations:
0 1 2 3 4 5 6 7
17 43 66 59 37 17 7 4

19

m5 <- unmarked::pcount(~1 ~ 1, umf, K = 50)
m5

Call:
unmarked::pcount(formula = ~1 ~ 1, data = umf, K = 50)

Abundance:
Estimate SE z P(>|z|)

1.53 0.0917 16.7 8.92e-63

Detection:
Estimate SE z P(>|z|)

0.262 0.159 1.65 0.0989

AIC: 816.689

plogis(coef(m5, type = "det"))

p(Int)
0.5650955

exp(coef(m5, type = "state"))

lam(Int)
4.636385

References

Royle, 2004. N-mixture models for estimating population size from spatially replicated
counts. Biometrics, 60:108–115. Fulltext, DOI 10.1111/j.0006-341X.2004.00142.x

The K argument of the pcount() function is the upper index of integration for N-mixture.
This will make more sense once we take a look at the likelihood function in the next section.

N-mixture likelihood

The likelihood function for the N-mixture model can be written as:

20

https://ecology.ghislainv.fr/publications/biblio/Royle2004-Biometrics.pdf

𝐿(𝑝, 𝜆; 𝑦1,1, … , 𝑦𝑛,𝑇) =
𝑛

∏
𝑖=1

𝐾
∑

𝑁𝑖=𝑌𝑚𝑎𝑥,𝑖

𝑇
∏
𝑡=1

𝑒−𝜆𝑖
𝜆𝑁𝑖

𝑖
𝑁𝑖!

(𝑁𝑖
𝑌𝑖𝑡

) 𝑝𝑌𝑖𝑡(1 − 𝑝)𝑁𝑖−𝑌𝑖𝑡

This distribution is a mixture of Poisson and Binomial distributions.

The 𝐾 value strictly speaking should be ∞, but the estimates won’t change much as long as
𝐾 is large enough relative to the maximum of 𝑁𝑖. Of course for real data we do not know
what the values of 𝑁𝑖 are. The numerical integration (summation) for site 𝑖 goes from 𝑌𝑚𝑎𝑥,𝑖
(Y_max) to 𝐾, because we know that 𝑌𝑖𝑡 ≤ 𝑁𝑖.

We can write this as a log likelihood function:

logL_fun_pcount_R <- function(Y, p, lambda, n, T, Y_max, K) {
L <- rep(NA, n)
for (i in 1:n) {

S <- 0
for (Nit in Y_max[i]:K) {

v <- 0
for (j in 1:T) {

v <- v + dbinom(Y[i, j], Nit, p, log = TRUE) +
dpois(Nit, lambda, log = TRUE)

}
S <- S + exp(v)

}
L[i] <- S

}
sum(log(L))

}

using C code from unmarked - much faster
logL_fun_pcount_C <- function(Y, p, lambda, n, T, Y_max, K = 50) {

nll <- unmarked:::nll_pcount(
beta = c(log(lambda), qlogis(p)),
n_param = c(1, 1, 0),
y = Y,
X = matrix(1, n, 1),
V = matrix(1, n * T, 1),
X_offset = rep(0, n),
V_offset = matrix(1, n * T, 1),
K = K,
Kmin = Y_max,
mixture = 1,

21

threads = 1
)
-nll

}

g <- 50
grid <- expand.grid(

p = seq(0, 1, length.out = g),
lambda = seq(0, lambda.true * 2, length.out = g),
logL = NA

)

logL_fun_pcount <- logL_fun_pcount_C
for (i in 1:nrow(grid)) {

grid$logL[i] <- logL_fun_pcount(
Y = Y,
p = grid$p[i],
lambda = grid$lambda[i],
n = n, T = T, Y_max = Y_max, K = 50

)
}
grid$logL[is.infinite(grid$logL)] <- NA

The images showing the likelihood surface:

image(
list(

x = unique(grid$p),
y = unique(grid$lambda),
z = matrix(exp(grid$logL), sqrt(nrow(grid)))

),
xlab = "p",
ylab = expression(lambda)

)
abline(h = lambda.true, v = p.true, col = 1, lwd = 1)

22

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

p

λ

grid |> ggplot(aes(x = p, y = lambda, z = exp(logL))) +
geom_contour_filled(show.legend = FALSE) +
geom_hline(yintercept = lambda.true) +
geom_vline(xintercept = p.true) +
xlab("p") +
ylab(expression(lambda)) +
theme_light()

0

2

4

6

8

0.00 0.25 0.50 0.75 1.00
p

λ

23

grid[which.max(grid$logL),]

p lambda logL
1367 0.3265306 4.628571 -406.3499

Note

We will circle back to these plots later, feel free to explore it with different settings of 𝑛,
𝑇 , 𝑝, and 𝜆.

Next

Introduction to agent-based simulations

End of Day 1. See you tomorrow!

24

	Preamble
	Introduction to simulations
	Simulating occupancy data
	Simulating multiple visits
	Fitting occupancy models
	Maximum likelihood estimator

	Simulating count data
	Observation error for counts
	Count data with multiple visits
	Fitting N-mixture models
	N-mixture likelihood

	Next

