Adding Progress Bar to '*apply' Functions
pbapply.Rd
Adding progress bar to *apply
functions, possibly leveraging
parallel processing.
Usage
pblapply(X, FUN, ..., cl = NULL)
pbeapply(env, FUN, ..., all.names = FALSE, USE.NAMES = TRUE, cl = NULL)
pbwalk(X, FUN, ..., cl = NULL)
pbapply(X, MARGIN, FUN, ..., simplify = TRUE, cl = NULL)
pbsapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE, cl = NULL)
pbvapply(X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE, cl = NULL)
pbreplicate(n, expr, simplify = "array", ..., cl = NULL)
.pb_env
pbmapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE)
pb.mapply(FUN, dots, MoreArgs)
pbMap(f, ...)
pbtapply(X, INDEX, FUN = NULL, ..., default = NA, simplify = TRUE, cl = NULL)
pbby(data, INDICES, FUN, ..., simplify = TRUE, cl = NULL)
Arguments
- X
For
pbsapply
,pblapply
, andpbwalk
a vector (atomic or list) or an expressions vector (other objects including classed objects will be coerced byas.list
.) Forpbapply
an array, including a matrix. Forpbtapply
an R object for which asplit
method exists. Typically vector-like, allowing subsetting with[
.- MARGIN
A vector giving the subscripts which the function will be applied over.
1
indicates rows,2
indicates columns,c(1,2)
indicates rows and columns.- FUN, f
The function to be applied to each element of
X
: seeapply
,sapply
, andlapply
. In the case of functions like+
,%*%
, etc., the function name must be backquoted or quoted. IfFUN
isNULL
,pbtapply
returns a vector which can be used to subscript the multi-way arraypbtapply
normally produces.- ...
Optional arguments to
FUN
and also to underlying functions (e.g.parLapply
andmclapply
whencl
is notNULL
).- dots
List of arguments to vectorize over (vectors or lists of strictly positive length, or all of zero length); see
.mapply
.- env
Environment to be used.
- FUN.VALUE
A (generalized) vector; a template for the return value from
FUN
. See 'Details' forvapply
.- simplify, SIMPLIFY
Logical; should the result be simplified to a vector or matrix if possible?
pbtapply
returns an array of mode"list"
(in other words, a list with a dim attribute) whenFALSE
; ifTRUE
(the default), then ifFUN
always returns a scalar,pbtapply
returns an array with the mode of the scalar.- USE.NAMES
Logical; if
TRUE
and ifX
is character, useX
as names for the result unless it had names already.- all.names
Logical, indicating whether to apply the function to all values.
- n
Number of replications.
- expr
Expression (language object, usually a call) to evaluate repeatedly.
- cl
A cluster object created by
makeCluster
, or an integer to indicate number of child-processes (integer values are ignored on Windows) for parallel evaluations (see Details on performance). It can also be"future"
to use a future backend (see Details),NULL
(default) refers to sequential evaluation.- MoreArgs
A list of other arguments to
FUN
.- INDEX
A
list
of one or morefactor
s, each of same length asX
. The elements are coerced to factors byas.factor
.- INDICES
A factor or a list of factors, each of length
nrow(data)
.- data
An R object, normally a data frame, possibly a matrix.
- default
Only in the case of simplification to an array, the value with which the array is initialized as
array
(default, dim = ..)
. Before R 3.4.0, this was hard coded toarray
()
's defaultNA
. If it isNA
(the default), the missing value of the answer type, e.g.NA_real_
, is chosen (as.raw
(0)
for"raw"
). In a numerical case, it may be set, e.g., toFUN(integer(0))
, e.g., in the case ofFUN = sum
to0
or0L
.
Details
The behavior of the progress bar is controlled by the option
type
in pboptions
,
it can take values c("txt", "win", "tk", "none",)
on Windows,
and c("txt", "tk", "none",)
on Unix systems.
Other options have elements that are arguments used in the functions
timerProgressBar
, txtProgressBar
,
and tkProgressBar
.
See pboptions
for how to conveniently set these.
Parallel processing can be enabled through the cl
argument.
parLapply
is called when cl
is a 'cluster' object,
mclapply
is called when cl
is an integer.
Showing the progress bar increases the communication overhead
between the main process and nodes / child processes compared to the
parallel equivalents of the functions without the progress bar.
The functions fall back to their original equivalents when the progress bar is
disabled (i.e. getOption("pboptions")$type == "none"
or dopb()
is
FALSE
). This is the default when interactive()
if FALSE
(i.e. called from command line R script).
When doing parallel processing, other objects might need to pushed to the workers, and random numbers must be handled with care (see Examples).
Updating the progress bar with mclapply
can be slightly slower compared to using a Fork cluster
(i.e. calling makeForkCluster
).
Care must be taken to set appropriate random numbers in this case.
Note the use_lb
option (see pboptions
)
for using load balancing when running in parallel clusters.
If using mclapply
, the ...
passes
arguments to the underlying function for further control.
pbwalk
is similar to pblapply
but it calls FUN
only for its side-effect and returns the input X
invisibly
(this behavior is modeled after `purrr::walk`).
Note that when cl = "future"
, you might have to specify the
future.seed
argument (passed as part of ...
) when
using random numbers in parallel.
Note also that if your code prints messages or you encounter warnings during execution, the condition messages might cause the progress bar to break up and continue on a new line.
Value
Similar to the value returned by the standard *apply
functions.
A progress bar is showed as a side effect.
See also
Progress bars used in the functions:
txtProgressBar
,
tkProgressBar
,
timerProgressBar
Sequential *apply
functions:
apply
, sapply
,
lapply
, replicate
,
mapply
, .mapply
,
tapply
Parallel *apply
functions from package 'parallel':
parLapply
,
mclapply
.
Setting the options: pboptions
Conveniently add progress bar to for
-like loops:
startpb
, setpb
, getpb
,
closepb
Examples
## --- simple linear model simulation ---
set.seed(1234)
n <- 200
x <- rnorm(n)
y <- rnorm(n, crossprod(t(model.matrix(~ x)), c(0, 1)), sd = 0.5)
d <- data.frame(y, x)
## model fitting and bootstrap
mod <- lm(y ~ x, d)
ndat <- model.frame(mod)
B <- 100
bid <- sapply(1:B, function(i) sample(nrow(ndat), nrow(ndat), TRUE))
fun <- function(z) {
if (missing(z))
z <- sample(nrow(ndat), nrow(ndat), TRUE)
coef(lm(mod$call$formula, data=ndat[z,]))
}
## standard '*apply' functions
system.time(res1 <- lapply(1:B, function(i) fun(bid[,i])))
#> user system elapsed
#> 0.025 0.001 0.026
system.time(res2 <- sapply(1:B, function(i) fun(bid[,i])))
#> user system elapsed
#> 0.026 0.000 0.026
system.time(res3 <- apply(bid, 2, fun))
#> user system elapsed
#> 0.027 0.001 0.027
system.time(res4 <- replicate(B, fun()))
#> user system elapsed
#> 0.027 0.001 0.027
## 'pb*apply' functions
## try different settings:
## "none", "txt", "tk", "win", "timer"
op <- pboptions(type = "timer") # default
system.time(res1pb <- pblapply(1:B, function(i) fun(bid[,i])))
#>
| | 0 % ~calculating
|+ | 1 % ~00s
|+ | 2 % ~00s
|++ | 3 % ~00s
|++ | 4 % ~00s
|+++ | 5 % ~00s
|+++ | 6 % ~00s
|++++ | 7 % ~00s
|++++ | 8 % ~00s
|+++++ | 9 % ~00s
|+++++ | 10% ~00s
|++++++ | 11% ~00s
|++++++ | 12% ~00s
|+++++++ | 13% ~00s
|+++++++ | 14% ~00s
|++++++++ | 15% ~00s
|++++++++ | 16% ~00s
|+++++++++ | 17% ~00s
|+++++++++ | 18% ~00s
|++++++++++ | 19% ~00s
|++++++++++ | 20% ~00s
|+++++++++++ | 21% ~00s
|+++++++++++ | 22% ~00s
|++++++++++++ | 23% ~00s
|++++++++++++ | 24% ~00s
|+++++++++++++ | 25% ~00s
|+++++++++++++ | 26% ~00s
|++++++++++++++ | 27% ~00s
|++++++++++++++ | 28% ~00s
|+++++++++++++++ | 29% ~00s
|+++++++++++++++ | 30% ~00s
|++++++++++++++++ | 31% ~00s
|++++++++++++++++ | 32% ~00s
|+++++++++++++++++ | 33% ~00s
|+++++++++++++++++ | 34% ~00s
|++++++++++++++++++ | 35% ~00s
|++++++++++++++++++ | 36% ~00s
|+++++++++++++++++++ | 37% ~00s
|+++++++++++++++++++ | 38% ~00s
|++++++++++++++++++++ | 39% ~00s
|++++++++++++++++++++ | 40% ~00s
|+++++++++++++++++++++ | 41% ~00s
|+++++++++++++++++++++ | 42% ~00s
|++++++++++++++++++++++ | 43% ~00s
|++++++++++++++++++++++ | 44% ~00s
|+++++++++++++++++++++++ | 45% ~00s
|+++++++++++++++++++++++ | 46% ~00s
|++++++++++++++++++++++++ | 47% ~00s
|++++++++++++++++++++++++ | 48% ~00s
|+++++++++++++++++++++++++ | 49% ~00s
|+++++++++++++++++++++++++ | 50% ~00s
|++++++++++++++++++++++++++ | 51% ~00s
|++++++++++++++++++++++++++ | 52% ~00s
|+++++++++++++++++++++++++++ | 53% ~00s
|+++++++++++++++++++++++++++ | 54% ~00s
|++++++++++++++++++++++++++++ | 55% ~00s
|++++++++++++++++++++++++++++ | 56% ~00s
|+++++++++++++++++++++++++++++ | 57% ~00s
|+++++++++++++++++++++++++++++ | 58% ~00s
|++++++++++++++++++++++++++++++ | 59% ~00s
|++++++++++++++++++++++++++++++ | 60% ~00s
|+++++++++++++++++++++++++++++++ | 61% ~00s
|+++++++++++++++++++++++++++++++ | 62% ~00s
|++++++++++++++++++++++++++++++++ | 63% ~00s
|++++++++++++++++++++++++++++++++ | 64% ~00s
|+++++++++++++++++++++++++++++++++ | 65% ~00s
|+++++++++++++++++++++++++++++++++ | 66% ~00s
|++++++++++++++++++++++++++++++++++ | 67% ~00s
|++++++++++++++++++++++++++++++++++ | 68% ~00s
|+++++++++++++++++++++++++++++++++++ | 69% ~00s
|+++++++++++++++++++++++++++++++++++ | 70% ~00s
|++++++++++++++++++++++++++++++++++++ | 71% ~00s
|++++++++++++++++++++++++++++++++++++ | 72% ~00s
|+++++++++++++++++++++++++++++++++++++ | 73% ~00s
|+++++++++++++++++++++++++++++++++++++ | 74% ~00s
|++++++++++++++++++++++++++++++++++++++ | 75% ~00s
|++++++++++++++++++++++++++++++++++++++ | 76% ~00s
|+++++++++++++++++++++++++++++++++++++++ | 77% ~00s
|+++++++++++++++++++++++++++++++++++++++ | 78% ~00s
|++++++++++++++++++++++++++++++++++++++++ | 79% ~00s
|++++++++++++++++++++++++++++++++++++++++ | 80% ~00s
|+++++++++++++++++++++++++++++++++++++++++ | 81% ~00s
|+++++++++++++++++++++++++++++++++++++++++ | 82% ~00s
|++++++++++++++++++++++++++++++++++++++++++ | 83% ~00s
|++++++++++++++++++++++++++++++++++++++++++ | 84% ~00s
|+++++++++++++++++++++++++++++++++++++++++++ | 85% ~00s
|+++++++++++++++++++++++++++++++++++++++++++ | 86% ~00s
|++++++++++++++++++++++++++++++++++++++++++++ | 87% ~00s
|++++++++++++++++++++++++++++++++++++++++++++ | 88% ~00s
|+++++++++++++++++++++++++++++++++++++++++++++ | 89% ~00s
|+++++++++++++++++++++++++++++++++++++++++++++ | 90% ~00s
|++++++++++++++++++++++++++++++++++++++++++++++ | 91% ~00s
|++++++++++++++++++++++++++++++++++++++++++++++ | 92% ~00s
|+++++++++++++++++++++++++++++++++++++++++++++++ | 93% ~00s
|+++++++++++++++++++++++++++++++++++++++++++++++ | 94% ~00s
|++++++++++++++++++++++++++++++++++++++++++++++++ | 95% ~00s
|++++++++++++++++++++++++++++++++++++++++++++++++ | 96% ~00s
|+++++++++++++++++++++++++++++++++++++++++++++++++ | 97% ~00s
|+++++++++++++++++++++++++++++++++++++++++++++++++ | 98% ~00s
|++++++++++++++++++++++++++++++++++++++++++++++++++| 99% ~00s
|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=00s
#> user system elapsed
#> 0.032 0.001 0.034
pboptions(op)
pboptions(type = "txt")
system.time(res2pb <- pbsapply(1:B, function(i) fun(bid[,i])))
#>
|
| | 0%
|
| | 1%
|
|+ | 2%
|
|++ | 3%
|
|++ | 4%
|
|++ | 5%
|
|+++ | 6%
|
|++++ | 7%
|
|++++ | 8%
|
|++++ | 9%
|
|+++++ | 10%
|
|++++++ | 11%
|
|++++++ | 12%
|
|++++++ | 13%
|
|+++++++ | 14%
|
|++++++++ | 15%
|
|++++++++ | 16%
|
|++++++++ | 17%
|
|+++++++++ | 18%
|
|++++++++++ | 19%
|
|++++++++++ | 20%
|
|++++++++++ | 21%
|
|+++++++++++ | 22%
|
|++++++++++++ | 23%
|
|++++++++++++ | 24%
|
|++++++++++++ | 25%
|
|+++++++++++++ | 26%
|
|++++++++++++++ | 27%
|
|++++++++++++++ | 28%
|
|++++++++++++++ | 29%
|
|+++++++++++++++ | 30%
|
|++++++++++++++++ | 31%
|
|++++++++++++++++ | 32%
|
|++++++++++++++++ | 33%
|
|+++++++++++++++++ | 34%
|
|++++++++++++++++++ | 35%
|
|++++++++++++++++++ | 36%
|
|++++++++++++++++++ | 37%
|
|+++++++++++++++++++ | 38%
|
|++++++++++++++++++++ | 39%
|
|++++++++++++++++++++ | 40%
|
|++++++++++++++++++++ | 41%
|
|+++++++++++++++++++++ | 42%
|
|++++++++++++++++++++++ | 43%
|
|++++++++++++++++++++++ | 44%
|
|++++++++++++++++++++++ | 45%
|
|+++++++++++++++++++++++ | 46%
|
|++++++++++++++++++++++++ | 47%
|
|++++++++++++++++++++++++ | 48%
|
|++++++++++++++++++++++++ | 49%
|
|+++++++++++++++++++++++++ | 50%
|
|++++++++++++++++++++++++++ | 51%
|
|++++++++++++++++++++++++++ | 52%
|
|++++++++++++++++++++++++++ | 53%
|
|+++++++++++++++++++++++++++ | 54%
|
|++++++++++++++++++++++++++++ | 55%
|
|++++++++++++++++++++++++++++ | 56%
|
|++++++++++++++++++++++++++++ | 57%
|
|+++++++++++++++++++++++++++++ | 58%
|
|++++++++++++++++++++++++++++++ | 59%
|
|++++++++++++++++++++++++++++++ | 60%
|
|++++++++++++++++++++++++++++++ | 61%
|
|+++++++++++++++++++++++++++++++ | 62%
|
|++++++++++++++++++++++++++++++++ | 63%
|
|++++++++++++++++++++++++++++++++ | 64%
|
|++++++++++++++++++++++++++++++++ | 65%
|
|+++++++++++++++++++++++++++++++++ | 66%
|
|++++++++++++++++++++++++++++++++++ | 67%
|
|++++++++++++++++++++++++++++++++++ | 68%
|
|++++++++++++++++++++++++++++++++++ | 69%
|
|+++++++++++++++++++++++++++++++++++ | 70%
|
|++++++++++++++++++++++++++++++++++++ | 71%
|
|++++++++++++++++++++++++++++++++++++ | 72%
|
|++++++++++++++++++++++++++++++++++++ | 73%
|
|+++++++++++++++++++++++++++++++++++++ | 74%
|
|++++++++++++++++++++++++++++++++++++++ | 75%
|
|++++++++++++++++++++++++++++++++++++++ | 76%
|
|++++++++++++++++++++++++++++++++++++++ | 77%
|
|+++++++++++++++++++++++++++++++++++++++ | 78%
|
|++++++++++++++++++++++++++++++++++++++++ | 79%
|
|++++++++++++++++++++++++++++++++++++++++ | 80%
|
|++++++++++++++++++++++++++++++++++++++++ | 81%
|
|+++++++++++++++++++++++++++++++++++++++++ | 82%
|
|++++++++++++++++++++++++++++++++++++++++++ | 83%
|
|++++++++++++++++++++++++++++++++++++++++++ | 84%
|
|++++++++++++++++++++++++++++++++++++++++++ | 85%
|
|+++++++++++++++++++++++++++++++++++++++++++ | 86%
|
|++++++++++++++++++++++++++++++++++++++++++++ | 87%
|
|++++++++++++++++++++++++++++++++++++++++++++ | 88%
|
|++++++++++++++++++++++++++++++++++++++++++++ | 89%
|
|+++++++++++++++++++++++++++++++++++++++++++++ | 90%
|
|++++++++++++++++++++++++++++++++++++++++++++++ | 91%
|
|++++++++++++++++++++++++++++++++++++++++++++++ | 92%
|
|++++++++++++++++++++++++++++++++++++++++++++++ | 93%
|
|+++++++++++++++++++++++++++++++++++++++++++++++ | 94%
|
|++++++++++++++++++++++++++++++++++++++++++++++++ | 95%
|
|++++++++++++++++++++++++++++++++++++++++++++++++ | 96%
|
|++++++++++++++++++++++++++++++++++++++++++++++++ | 97%
|
|+++++++++++++++++++++++++++++++++++++++++++++++++ | 98%
|
|++++++++++++++++++++++++++++++++++++++++++++++++++| 99%
|
|++++++++++++++++++++++++++++++++++++++++++++++++++| 100%
#> user system elapsed
#> 0.030 0.001 0.031
pboptions(op)
pboptions(type = "txt", style = 1, char = "=")
system.time(res3pb <- pbapply(bid, 2, fun))
#> ==================================================
#> user system elapsed
#> 0.028 0.001 0.029
pboptions(op)
pboptions(type = "txt", char = ":")
system.time(res4pb <- pbreplicate(B, fun()))
#>
|
| | 0%
|
| | 1%
|
|: | 2%
|
|:: | 3%
|
|:: | 4%
|
|:: | 5%
|
|::: | 6%
|
|:::: | 7%
|
|:::: | 8%
|
|:::: | 9%
|
|::::: | 10%
|
|:::::: | 11%
|
|:::::: | 12%
|
|:::::: | 13%
|
|::::::: | 14%
|
|:::::::: | 15%
|
|:::::::: | 16%
|
|:::::::: | 17%
|
|::::::::: | 18%
|
|:::::::::: | 19%
|
|:::::::::: | 20%
|
|:::::::::: | 21%
|
|::::::::::: | 22%
|
|:::::::::::: | 23%
|
|:::::::::::: | 24%
|
|:::::::::::: | 25%
|
|::::::::::::: | 26%
|
|:::::::::::::: | 27%
|
|:::::::::::::: | 28%
|
|:::::::::::::: | 29%
|
|::::::::::::::: | 30%
|
|:::::::::::::::: | 31%
|
|:::::::::::::::: | 32%
|
|:::::::::::::::: | 33%
|
|::::::::::::::::: | 34%
|
|:::::::::::::::::: | 35%
|
|:::::::::::::::::: | 36%
|
|:::::::::::::::::: | 37%
|
|::::::::::::::::::: | 38%
|
|:::::::::::::::::::: | 39%
|
|:::::::::::::::::::: | 40%
|
|:::::::::::::::::::: | 41%
|
|::::::::::::::::::::: | 42%
|
|:::::::::::::::::::::: | 43%
|
|:::::::::::::::::::::: | 44%
|
|:::::::::::::::::::::: | 45%
|
|::::::::::::::::::::::: | 46%
|
|:::::::::::::::::::::::: | 47%
|
|:::::::::::::::::::::::: | 48%
|
|:::::::::::::::::::::::: | 49%
|
|::::::::::::::::::::::::: | 50%
|
|:::::::::::::::::::::::::: | 51%
|
|:::::::::::::::::::::::::: | 52%
|
|:::::::::::::::::::::::::: | 53%
|
|::::::::::::::::::::::::::: | 54%
|
|:::::::::::::::::::::::::::: | 55%
|
|:::::::::::::::::::::::::::: | 56%
|
|:::::::::::::::::::::::::::: | 57%
|
|::::::::::::::::::::::::::::: | 58%
|
|:::::::::::::::::::::::::::::: | 59%
|
|:::::::::::::::::::::::::::::: | 60%
|
|:::::::::::::::::::::::::::::: | 61%
|
|::::::::::::::::::::::::::::::: | 62%
|
|:::::::::::::::::::::::::::::::: | 63%
|
|:::::::::::::::::::::::::::::::: | 64%
|
|:::::::::::::::::::::::::::::::: | 65%
|
|::::::::::::::::::::::::::::::::: | 66%
|
|:::::::::::::::::::::::::::::::::: | 67%
|
|:::::::::::::::::::::::::::::::::: | 68%
|
|:::::::::::::::::::::::::::::::::: | 69%
|
|::::::::::::::::::::::::::::::::::: | 70%
|
|:::::::::::::::::::::::::::::::::::: | 71%
|
|:::::::::::::::::::::::::::::::::::: | 72%
|
|:::::::::::::::::::::::::::::::::::: | 73%
|
|::::::::::::::::::::::::::::::::::::: | 74%
|
|:::::::::::::::::::::::::::::::::::::: | 75%
|
|:::::::::::::::::::::::::::::::::::::: | 76%
|
|:::::::::::::::::::::::::::::::::::::: | 77%
|
|::::::::::::::::::::::::::::::::::::::: | 78%
|
|:::::::::::::::::::::::::::::::::::::::: | 79%
|
|:::::::::::::::::::::::::::::::::::::::: | 80%
|
|:::::::::::::::::::::::::::::::::::::::: | 81%
|
|::::::::::::::::::::::::::::::::::::::::: | 82%
|
|:::::::::::::::::::::::::::::::::::::::::: | 83%
|
|:::::::::::::::::::::::::::::::::::::::::: | 84%
|
|:::::::::::::::::::::::::::::::::::::::::: | 85%
|
|::::::::::::::::::::::::::::::::::::::::::: | 86%
|
|:::::::::::::::::::::::::::::::::::::::::::: | 87%
|
|:::::::::::::::::::::::::::::::::::::::::::: | 88%
|
|:::::::::::::::::::::::::::::::::::::::::::: | 89%
|
|::::::::::::::::::::::::::::::::::::::::::::: | 90%
|
|:::::::::::::::::::::::::::::::::::::::::::::: | 91%
|
|:::::::::::::::::::::::::::::::::::::::::::::: | 92%
|
|:::::::::::::::::::::::::::::::::::::::::::::: | 93%
|
|::::::::::::::::::::::::::::::::::::::::::::::: | 94%
|
|:::::::::::::::::::::::::::::::::::::::::::::::: | 95%
|
|:::::::::::::::::::::::::::::::::::::::::::::::: | 96%
|
|:::::::::::::::::::::::::::::::::::::::::::::::: | 97%
|
|::::::::::::::::::::::::::::::::::::::::::::::::: | 98%
|
|::::::::::::::::::::::::::::::::::::::::::::::::::| 99%
|
|::::::::::::::::::::::::::::::::::::::::::::::::::| 100%
#> user system elapsed
#> 0.031 0.000 0.032
pboptions(op)
if (FALSE) { # \dontrun{
## parallel evaluation using the parallel package
## (n = 2000 and B = 1000 will give visible timing differences)
library(parallel)
cl <- makeCluster(2L)
clusterExport(cl, c("fun", "mod", "ndat", "bid"))
## parallel with no progress bar: snow type cluster
## (RNG is set in the main process to define the object bid)
system.time(res1cl <- parLapply(cl = cl, 1:B, function(i) fun(bid[,i])))
system.time(res2cl <- parSapply(cl = cl, 1:B, function(i) fun(bid[,i])))
system.time(res3cl <- parApply(cl, bid, 2, fun))
## parallel with progress bar: snow type cluster
## (RNG is set in the main process to define the object bid)
system.time(res1pbcl <- pblapply(1:B, function(i) fun(bid[,i]), cl = cl))
system.time(res2pbcl <- pbsapply(1:B, function(i) fun(bid[,i]), cl = cl))
## (RNG needs to be set when not using bid)
parallel::clusterSetRNGStream(cl, iseed = 0L)
system.time(res4pbcl <- pbreplicate(B, fun(), cl = cl))
system.time(res3pbcl <- pbapply(bid, 2, fun, cl = cl))
stopCluster(cl)
if (.Platform$OS.type != "windows") {
## parallel with no progress bar: multicore type forking
## (mc.set.seed = TRUE in parallel::mclapply by default)
system.time(res2mc <- mclapply(1:B, function(i) fun(bid[,i]), mc.cores = 2L))
## parallel with progress bar: multicore type forking
## (mc.set.seed = TRUE in parallel::mclapply by default)
system.time(res1pbmc <- pblapply(1:B, function(i) fun(bid[,i]), cl = 2L))
system.time(res2pbmc <- pbsapply(1:B, function(i) fun(bid[,i]), cl = 2L))
system.time(res4pbmc <- pbreplicate(B, fun(), cl = 2L))
}
} # }
## --- Examples taken from standard '*apply' functions ---
## --- sapply, lapply, and replicate ---
require(stats); require(graphics)
x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
# compute the list mean for each list element
pblapply(x, mean)
#> $a
#> [1] 5.5
#>
#> $beta
#> [1] 4.535125
#>
#> $logic
#> [1] 0.5
#>
pbwalk(x, mean)
# median and quartiles for each list element
pblapply(x, quantile, probs = 1:3/4)
#> $a
#> 25% 50% 75%
#> 3.25 5.50 7.75
#>
#> $beta
#> 25% 50% 75%
#> 0.2516074 1.0000000 5.0536690
#>
#> $logic
#> 25% 50% 75%
#> 0.0 0.5 1.0
#>
pbsapply(x, quantile)
#> a beta logic
#> 0% 1.00 0.04978707 0.0
#> 25% 3.25 0.25160736 0.0
#> 50% 5.50 1.00000000 0.5
#> 75% 7.75 5.05366896 1.0
#> 100% 10.00 20.08553692 1.0
i39 <- sapply(3:9, seq) # list of vectors
pbsapply(i39, fivenum)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] 1.0 1.0 1 1.0 1.0 1.0 1
#> [2,] 1.5 1.5 2 2.0 2.5 2.5 3
#> [3,] 2.0 2.5 3 3.5 4.0 4.5 5
#> [4,] 2.5 3.5 4 5.0 5.5 6.5 7
#> [5,] 3.0 4.0 5 6.0 7.0 8.0 9
pbvapply(i39, fivenum,
c(Min. = 0, "1st Qu." = 0, Median = 0, "3rd Qu." = 0, Max. = 0))
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> Min. 1.0 1.0 1 1.0 1.0 1.0 1
#> 1st Qu. 1.5 1.5 2 2.0 2.5 2.5 3
#> Median 2.0 2.5 3 3.5 4.0 4.5 5
#> 3rd Qu. 2.5 3.5 4 5.0 5.5 6.5 7
#> Max. 3.0 4.0 5 6.0 7.0 8.0 9
## sapply(*, "array") -- artificial example
(v <- structure(10*(5:8), names = LETTERS[1:4]))
#> A B C D
#> 50 60 70 80
f2 <- function(x, y) outer(rep(x, length.out = 3), y)
(a2 <- pbsapply(v, f2, y = 2*(1:5), simplify = "array"))
#> , , A
#>
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 100 200 300 400 500
#> [2,] 100 200 300 400 500
#> [3,] 100 200 300 400 500
#>
#> , , B
#>
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 120 240 360 480 600
#> [2,] 120 240 360 480 600
#> [3,] 120 240 360 480 600
#>
#> , , C
#>
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 140 280 420 560 700
#> [2,] 140 280 420 560 700
#> [3,] 140 280 420 560 700
#>
#> , , D
#>
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 160 320 480 640 800
#> [2,] 160 320 480 640 800
#> [3,] 160 320 480 640 800
#>
a.2 <- pbvapply(v, f2, outer(1:3, 1:5), y = 2*(1:5))
stopifnot(dim(a2) == c(3,5,4), all.equal(a2, a.2),
identical(dimnames(a2), list(NULL,NULL,LETTERS[1:4])))
summary(pbreplicate(100, mean(rexp(10))))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.4786 0.7273 0.9091 0.9666 1.1917 2.3021
## use of replicate() with parameters:
foo <- function(x = 1, y = 2) c(x, y)
# does not work: bar <- function(n, ...) replicate(n, foo(...))
bar <- function(n, x) pbreplicate(n, foo(x = x))
bar(5, x = 3)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 3 3 3 3 3
#> [2,] 2 2 2 2 2
## --- apply ---
## Compute row and column sums for a matrix:
x <- cbind(x1 = 3, x2 = c(4:1, 2:5))
dimnames(x)[[1]] <- letters[1:8]
pbapply(x, 2, mean, trim = .2)
#> x1 x2
#> 3 3
col.sums <- pbapply(x, 2, sum)
row.sums <- pbapply(x, 1, sum)
rbind(cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))
#> x1 x2 Rtot
#> a 3 4 7
#> b 3 3 6
#> c 3 2 5
#> d 3 1 4
#> e 3 2 5
#> f 3 3 6
#> g 3 4 7
#> h 3 5 8
#> Ctot 24 24 48
stopifnot( pbapply(x, 2, is.vector))
## Sort the columns of a matrix
pbapply(x, 2, sort)
#> x1 x2
#> [1,] 3 1
#> [2,] 3 2
#> [3,] 3 2
#> [4,] 3 3
#> [5,] 3 3
#> [6,] 3 4
#> [7,] 3 4
#> [8,] 3 5
## keeping named dimnames
names(dimnames(x)) <- c("row", "col")
x3 <- array(x, dim = c(dim(x),3),
dimnames = c(dimnames(x), list(C = paste0("cop.",1:3))))
identical(x, pbapply( x, 2, identity))
#> [1] TRUE
identical(x3, pbapply(x3, 2:3, identity))
#> [1] TRUE
##- function with extra args:
cave <- function(x, c1, c2) c(mean(x[c1]), mean(x[c2]))
pbapply(x, 1, cave, c1 = "x1", c2 = c("x1","x2"))
#> row
#> a b c d e f g h
#> [1,] 3.0 3 3.0 3 3.0 3 3.0 3
#> [2,] 3.5 3 2.5 2 2.5 3 3.5 4
ma <- matrix(c(1:4, 1, 6:8), nrow = 2)
ma
#> [,1] [,2] [,3] [,4]
#> [1,] 1 3 1 7
#> [2,] 2 4 6 8
pbapply(ma, 1, table) #--> a list of length 2
#> [[1]]
#>
#> 1 3 7
#> 2 1 1
#>
#> [[2]]
#>
#> 2 4 6 8
#> 1 1 1 1
#>
pbapply(ma, 1, stats::quantile) # 5 x n matrix with rownames
#> [,1] [,2]
#> 0% 1 2.0
#> 25% 1 3.5
#> 50% 2 5.0
#> 75% 4 6.5
#> 100% 7 8.0
stopifnot(dim(ma) == dim(pbapply(ma, 1:2, sum)))
## Example with different lengths for each call
z <- array(1:24, dim = 2:4)
zseq <- pbapply(z, 1:2, function(x) seq_len(max(x)))
zseq ## a 2 x 3 matrix
#> [,1] [,2] [,3]
#> [1,] integer,19 integer,21 integer,23
#> [2,] integer,20 integer,22 integer,24
typeof(zseq) ## list
#> [1] "list"
dim(zseq) ## 2 3
#> [1] 2 3
zseq[1,]
#> [[1]]
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#>
#> [[2]]
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#>
#> [[3]]
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#>
pbapply(z, 3, function(x) seq_len(max(x)))
#> [[1]]
#> [1] 1 2 3 4 5 6
#>
#> [[2]]
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12
#>
#> [[3]]
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#>
#> [[4]]
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#>
# a list without a dim attribute
## --- mapply and .mapply ---
pbmapply(rep, 1:4, 4:1)
#> [[1]]
#> [1] 1 1 1 1
#>
#> [[2]]
#> [1] 2 2 2
#>
#> [[3]]
#> [1] 3 3
#>
#> [[4]]
#> [1] 4
#>
pbmapply(rep, times = 1:4, x = 4:1)
#> [[1]]
#> [1] 4
#>
#> [[2]]
#> [1] 3 3
#>
#> [[3]]
#> [1] 2 2 2
#>
#> [[4]]
#> [1] 1 1 1 1
#>
pbmapply(rep, times = 1:4, MoreArgs = list(x = 42))
#> [[1]]
#> [1] 42
#>
#> [[2]]
#> [1] 42 42
#>
#> [[3]]
#> [1] 42 42 42
#>
#> [[4]]
#> [1] 42 42 42 42
#>
pbmapply(function(x, y) seq_len(x) + y,
c(a = 1, b = 2, c = 3), # names from first
c(A = 10, B = 0, C = -10))
#> $a
#> [1] 11
#>
#> $b
#> [1] 1 2
#>
#> $c
#> [1] -9 -8 -7
#>
word <- function(C, k) paste(rep.int(C, k), collapse = "")
utils::str(pbmapply(word, LETTERS[1:6], 6:1, SIMPLIFY = FALSE))
#> List of 6
#> $ A: chr "AAAAAA"
#> $ B: chr "BBBBB"
#> $ C: chr "CCCC"
#> $ D: chr "DDD"
#> $ E: chr "EE"
#> $ F: chr "F"
pb.mapply(rep,
dots = list(1:4, 4:1),
MoreArgs = list())
#> [[1]]
#> [1] 1 1 1 1
#>
#> [[2]]
#> [1] 2 2 2
#>
#> [[3]]
#> [1] 3 3
#>
#> [[4]]
#> [1] 4
#>
pb.mapply(rep,
dots = list(times = 1:4, x = 4:1),
MoreArgs = list())
#> [[1]]
#> [1] 4
#>
#> [[2]]
#> [1] 3 3
#>
#> [[3]]
#> [1] 2 2 2
#>
#> [[4]]
#> [1] 1 1 1 1
#>
pb.mapply(rep,
dots = list(times = 1:4),
MoreArgs = list(x = 42))
#> [[1]]
#> [1] 42
#>
#> [[2]]
#> [1] 42 42
#>
#> [[3]]
#> [1] 42 42 42
#>
#> [[4]]
#> [1] 42 42 42 42
#>
pb.mapply(function(x, y) seq_len(x) + y,
dots = list(c(a = 1, b = 2, c = 3), # names from first
c(A = 10, B = 0, C = -10)),
MoreArgs = list())
#> [[1]]
#> [1] 11
#>
#> [[2]]
#> [1] 1 2
#>
#> [[3]]
#> [1] -9 -8 -7
#>
## --- Map ---
pbMap(`+`, 1, 1 : 3) ; 1 + 1:3
#> [[1]]
#> [1] 2
#>
#> [[2]]
#> [1] 3
#>
#> [[3]]
#> [1] 4
#>
#> [1] 2 3 4
## --- eapply ---
env <- new.env(hash = FALSE)
env$a <- 1:10
env$beta <- exp(-3:3)
env$logic <- c(TRUE, FALSE, FALSE, TRUE)
pbeapply(env, mean)
#> $logic
#> [1] 0.5
#>
#> $beta
#> [1] 4.535125
#>
#> $a
#> [1] 5.5
#>
unlist(pbeapply(env, mean, USE.NAMES = FALSE))
#> [1] 0.500000 4.535125 5.500000
pbeapply(env, quantile, probs = 1:3/4)
#> $logic
#> 25% 50% 75%
#> 0.0 0.5 1.0
#>
#> $beta
#> 25% 50% 75%
#> 0.2516074 1.0000000 5.0536690
#>
#> $a
#> 25% 50% 75%
#> 3.25 5.50 7.75
#>
pbeapply(env, quantile)
#> $logic
#> 0% 25% 50% 75% 100%
#> 0.0 0.0 0.5 1.0 1.0
#>
#> $beta
#> 0% 25% 50% 75% 100%
#> 0.04978707 0.25160736 1.00000000 5.05366896 20.08553692
#>
#> $a
#> 0% 25% 50% 75% 100%
#> 1.00 3.25 5.50 7.75 10.00
#>
## --- tapply ---
require(stats)
groups <- as.factor(rbinom(32, n = 5, prob = 0.4))
pbtapply(groups, groups, length) #- is almost the same as
#> 10 11 13 14 18
#> 1 1 1 1 1
table(groups)
#> groups
#> 10 11 13 14 18
#> 1 1 1 1 1
## contingency table from data.frame : array with named dimnames
pbtapply(warpbreaks$breaks, warpbreaks[,-1], sum)
#> tension
#> wool L M H
#> A 401 216 221
#> B 254 259 169
pbtapply(warpbreaks$breaks, warpbreaks[, 3, drop = FALSE], sum)
#> tension
#> L M H
#> 655 475 390
n <- 17; fac <- factor(rep_len(1:3, n), levels = 1:5)
table(fac)
#> fac
#> 1 2 3 4 5
#> 6 6 5 0 0
pbtapply(1:n, fac, sum)
#> 1 2 3 4 5
#> 51 57 45 NA NA
pbtapply(1:n, fac, sum, default = 0) # maybe more desirable
#> 1 2 3 4 5
#> 51 57 45 0 0
pbtapply(1:n, fac, sum, simplify = FALSE)
#> $`1`
#> [1] 51
#>
#> $`2`
#> [1] 57
#>
#> $`3`
#> [1] 45
#>
#> $`4`
#> NULL
#>
#> $`5`
#> NULL
#>
pbtapply(1:n, fac, range)
#> $`1`
#> [1] 1 16
#>
#> $`2`
#> [1] 2 17
#>
#> $`3`
#> [1] 3 15
#>
#> $`4`
#> NULL
#>
#> $`5`
#> NULL
#>
pbtapply(1:n, fac, quantile)
#> $`1`
#> 0% 25% 50% 75% 100%
#> 1.00 4.75 8.50 12.25 16.00
#>
#> $`2`
#> 0% 25% 50% 75% 100%
#> 2.00 5.75 9.50 13.25 17.00
#>
#> $`3`
#> 0% 25% 50% 75% 100%
#> 3 6 9 12 15
#>
#> $`4`
#> NULL
#>
#> $`5`
#> NULL
#>
pbtapply(1:n, fac, length) ## NA's
#> 1 2 3 4 5
#> 6 6 5 NA NA
pbtapply(1:n, fac, length, default = 0) # == table(fac)
#> 1 2 3 4 5
#> 6 6 5 0 0
## example of ... argument: find quarterly means
pbtapply(presidents, cycle(presidents), mean, na.rm = TRUE)
#> 1 2 3 4
#> 58.44828 56.43333 57.22222 53.07143
ind <- list(c(1, 2, 2), c("A", "A", "B"))
table(ind)
#> ind.2
#> ind.1 A B
#> 1 1 0
#> 2 1 1
pbtapply(1:3, ind) #-> the split vector
#> [1] 1 2 4
pbtapply(1:3, ind, sum)
#> A B
#> 1 1 NA
#> 2 2 3
## Some assertions (not held by all patch propsals):
nq <- names(quantile(1:5))
stopifnot(
identical(pbtapply(1:3, ind), c(1L, 2L, 4L)),
identical(pbtapply(1:3, ind, sum),
matrix(c(1L, 2L, NA, 3L), 2, dimnames = list(c("1", "2"), c("A", "B")))),
identical(pbtapply(1:n, fac, quantile)[-1],
array(list(`2` = structure(c(2, 5.75, 9.5, 13.25, 17), .Names = nq),
`3` = structure(c(3, 6, 9, 12, 15), .Names = nq),
`4` = NULL, `5` = NULL), dim=4, dimnames=list(as.character(2:5)))))
## --- by ---
pbby(warpbreaks[, 1:2], warpbreaks[,"tension"], summary)
#> warpbreaks[, "tension"]: L
#> breaks wool
#> Min. :14.00 A:9
#> 1st Qu.:26.00 B:9
#> Median :29.50
#> Mean :36.39
#> 3rd Qu.:49.25
#> Max. :70.00
#> ------------------------------------------------------------
#> warpbreaks[, "tension"]: M
#> breaks wool
#> Min. :12.00 A:9
#> 1st Qu.:18.25 B:9
#> Median :27.00
#> Mean :26.39
#> 3rd Qu.:33.75
#> Max. :42.00
#> ------------------------------------------------------------
#> warpbreaks[, "tension"]: H
#> breaks wool
#> Min. :10.00 A:9
#> 1st Qu.:15.25 B:9
#> Median :20.50
#> Mean :21.67
#> 3rd Qu.:25.50
#> Max. :43.00
pbby(warpbreaks[, 1], warpbreaks[, -1], summary)
#> wool: A
#> tension: L
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 25.00 26.00 51.00 44.56 54.00 70.00
#> ------------------------------------------------------------
#> wool: B
#> tension: L
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 14.00 20.00 29.00 28.22 31.00 44.00
#> ------------------------------------------------------------
#> wool: A
#> tension: M
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 12 18 21 24 30 36
#> ------------------------------------------------------------
#> wool: B
#> tension: M
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 16.00 21.00 28.00 28.78 39.00 42.00
#> ------------------------------------------------------------
#> wool: A
#> tension: H
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 10.00 18.00 24.00 24.56 28.00 43.00
#> ------------------------------------------------------------
#> wool: B
#> tension: H
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 13.00 15.00 17.00 18.78 21.00 28.00
pbby(warpbreaks, warpbreaks[,"tension"],
function(x) lm(breaks ~ wool, data = x))
#> warpbreaks[, "tension"]: L
#>
#> Call:
#> lm(formula = breaks ~ wool, data = x)
#>
#> Coefficients:
#> (Intercept) woolB
#> 44.56 -16.33
#>
#> ------------------------------------------------------------
#> warpbreaks[, "tension"]: M
#>
#> Call:
#> lm(formula = breaks ~ wool, data = x)
#>
#> Coefficients:
#> (Intercept) woolB
#> 24.000 4.778
#>
#> ------------------------------------------------------------
#> warpbreaks[, "tension"]: H
#>
#> Call:
#> lm(formula = breaks ~ wool, data = x)
#>
#> Coefficients:
#> (Intercept) woolB
#> 24.556 -5.778
#>
tmp <- with(warpbreaks,
pbby(warpbreaks, tension,
function(x) lm(breaks ~ wool, data = x)))
sapply(tmp, coef)
#> L M H
#> (Intercept) 44.55556 24.000000 24.555556
#> woolB -16.33333 4.777778 -5.777778