Simulated example for occupancy model
datocc.RdSimulated example for occupancy model, see code below.
Usage
data(datocc)Format
A data frame with 1000 observations on the following 6 variables.
Ytrue occupancy
Wobservations
x1random variables used as covariates
x2random variables used as covariates
x3random variables used as covariates
x4random variables used as covariates
p.occprobability of occurrence
p.detprobability of detection
Details
This simulated example corresponds to the ZI Binomial model implemented in the function svocc.
References
Lele, S.R., Moreno, M. and Bayne, E. (2012) Dealing with detection error in site occupancy surveys: What can we do with a single survey? Journal of Plant Ecology, 5(1), 22–31. <doi:10.1093/jpe/rtr042>
Examples
data(datocc)
str(datocc)
#> 'data.frame': 1000 obs. of 8 variables:
#> $ Y : num 1 1 1 1 1 1 0 0 0 1 ...
#> $ W : num 1 0 0 0 1 1 0 0 0 1 ...
#> $ x1 : num -0.773 0.245 0.219 0.247 0.722 ...
#> $ x2 : Factor w/ 2 levels "0","1": 2 1 1 1 2 1 1 1 2 2 ...
#> $ x3 : num -1.205 0.301 -1.539 0.635 0.703 ...
#> $ x4 : num -0.9738 -0.0996 -0.1107 1.1922 -1.6559 ...
#> $ p.occ: num 0.71 0.872 0.869 0.873 0.927 ...
#> $ p.det: num 0.605 0.591 0.457 0.615 0.562 ...
if (FALSE) { # \dontrun{
## simulation
n <- 1000
set.seed(1234)
x1 <- runif(n, -1, 1)
x2 <- as.factor(rbinom(n, 1, 0.5))
x3 <- rnorm(n)
x4 <- rnorm(n)
beta <- c(0.6, 0.5)
theta <- c(0.4, -0.5, 0.3)
X <- model.matrix(~ x1)
Z <- model.matrix(~ x1 + x3)
mu <- drop(X %*% beta)
nu <- drop(Z %*% theta)
p.occ <- binomial("cloglog")$linkinv(mu)
p.det <- binomial("logit")$linkinv(nu)
Y <- rbinom(n, 1, p.occ)
W <- rbinom(n, 1, Y * p.det)
datocc <- data.frame(Y, W, x1, x2, x3, x4, p.occ, p.det)
} # }