Skip to contents

GPS collar data of mountain goats (Oreamnos americanus) from Lele and Keim (2006).

Usage

data(goats)

Format

A data frame with 19014 observations on the following 8 variables.

STATUS

a numeric vector, 1: used, 0: available

ID

a numeric vector, individuals

ELEVATION

a numeric vector (m)

SLOPE

a numeric vector (degrees, steep)

ET

a numeric vector, access to escape terrain (distance from steep slopes, m)

ASPECT

a numeric vector (degrees)

HLI

a numeric vector, heat load index (0-1)

TASP

a numeric vector, transformed aspect

Details

Mountain goat telemetry data were collected in the Coast Mountains of northwest British Columbia, Canada, as described in Lele and Keim (2006).

Source

Ecological Archives E087-181-S1, http://www.esapubs.org/archive/ecol/E087/181/

References

Lele, S. R. & Keim, J. L. (2006) Weighted distributions and estimation of resource selection probability functions. Ecology 87, 3021--3028.

Examples

data(goats)
str(goats)
#> 'data.frame':	19014 obs. of  8 variables:
#>  $ STATUS   : int  1 1 1 1 1 1 1 1 1 1 ...
#>  $ ID       : int  1 1 1 1 1 1 1 1 1 1 ...
#>  $ ELEVATION: int  651 660 316 334 454 343 429 493 400 442 ...
#>  $ SLOPE    : num  38.5 39.7 20.5 34.1 41.6 ...
#>  $ ET       : num  35.4 70.7 50 35.4 25 ...
#>  $ ASPECT   : num  243 270 279 266 258 ...
#>  $ HLI      : num  0.918 0.884 0.713 0.864 0.935 ...
#>  $ TASP     : num  0.947 0.699 0.575 0.745 0.829 ...
summary(goats)
#>      STATUS             ID           ELEVATION        SLOPE      
#>  Min.   :0.0000   Min.   : 1.000   Min.   : 248   Min.   : 0.00  
#>  1st Qu.:0.0000   1st Qu.: 3.000   1st Qu.: 685   1st Qu.:25.41  
#>  Median :0.0000   Median : 6.000   Median : 985   Median :34.18  
#>  Mean   :0.3333   Mean   : 5.785   Mean   :1000   Mean   :33.65  
#>  3rd Qu.:1.0000   3rd Qu.: 8.000   3rd Qu.:1322   3rd Qu.:42.68  
#>  Max.   :1.0000   Max.   :10.000   Max.   :1966   Max.   :70.80  
#>        ET            ASPECT           HLI               TASP         
#>  Min.   :  0.0   Min.   : -1.0   Min.   :0.07749   Min.   :-1.00000  
#>  1st Qu.: 25.0   1st Qu.:139.5   1st Qu.:0.53882   1st Qu.:-0.04676  
#>  Median : 75.0   Median :178.2   Median :0.73698   Median : 0.53151  
#>  Mean   :126.8   Mean   :180.7   Mean   :0.68497   Mean   : 0.33343  
#>  3rd Qu.:180.3   3rd Qu.:229.6   3rd Qu.:0.86565   3rd Qu.: 0.86441  
#>  Max.   :995.3   Max.   :359.6   Max.   :0.98321   Max.   : 1.00000  

if (FALSE) {
goats$exp.HLI <- exp(goats$HLI)
goats$sin.SLOPE <- sin(pi * goats$SLOPE / 180)
goats$ELEVATION <- scale(goats$ELEVATION)
goats$ET <- scale(goats$ET)
goats$TASP <- scale(goats$TASP)
m1 <- rspf(STATUS ~ TASP + sin.SLOPE + ELEVATION, goats, m=0, B = 99)
m2 <- rspf(STATUS ~ TASP + ELEVATION, goats, m=0, B = 99)
summary(m1)
summary(m2)
AIC(m1, m2)
plot(m1)
}