CAIC.Rd
Consistent AIC
CAIC(object, ..., alpha) # S3 method for default CAIC(object, ..., alpha) CAICtable(object, ..., alpha)
object | A fitted model object. |
---|---|
... | More fitted model objects. |
alpha | Weight factor between 0 and 1 (see Details). Default value is 0.5. |
CAIC = alpha * AIC + (1 - alpha) * BIC
Atomic vector if only one input object provided,
a data frame similar to what is returned by
AIC
and BIC
if there are more than one input objects.
CAICtable
returns a data frame with
delta CAIC (dCAIC = CAIC - min(CAIC)) and CAIC
weights (wCAIC = exp(-0.5 dCAIC_i) / sum(exp(-0.5 dCAIC_i)))
where i = 1,...,m are candidate models.
Bozdogan, H. 1987. Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions. Psychometrika, 52, 345-370.
Taper, M. 2004. Model identification from many candidates. In: Taper, M. and Lele, S. R. (eds), The Nature of Scientific Evidence: Statistical, Philosophical, and Empirical Considerations. The University of Chicago Press, Chicago, IL, 567 pp.
## compare some random models y <- rnorm(10) a <- lm(y ~ runif(10)) b <- lm(y ~ runif(10)) 0.5*(AIC(a) + BIC(a))#> [1] 33.73626CAIC(a)#> [1] 33.73626AIC(a)#> [1] 33.28238CAIC(a, alpha=1)#> [1] 33.28238BIC(a)#> [1] 34.19014CAIC(a, alpha=0)#> [1] 34.19014CAIC(a, b)#> df CAIC #> a 3 33.73626 #> b 3 35.90616CAIC(a, b, alpha=0.2)#> df CAIC #> a 3 34.00859 #> b 3 36.17849CAICtable(a, b, alpha=1)#> df CAIC dCAIC wCAIC #> a 3 33.28238 0.000000 0.7474294 #> b 3 35.45228 2.169898 0.2525706## you can use global option ## useful when inside of xv or bootstrap ## no need for extra argument getOption("CAIC_alpha")#> NULL#> [1] 0.2CAIC(a,b)#> df CAIC #> a 3 34.00859 #> b 3 36.17849#> NULL